RaDaR: an Integrated Strategy for Rare Disease

Daniel Gale St Peter's Chair of Nephrology University College London **RaDaR** Chair

NIHR BioResource St Peter's Trust 🏷 for Kidney, Bladder and Prostate Research

RaDaR UK Kidney Association

ROYALFREE

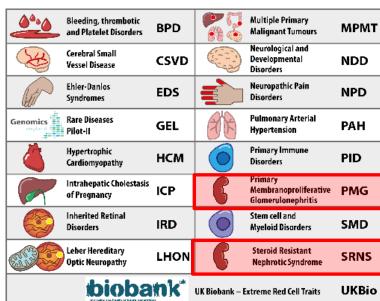
Medical Research MRC Council

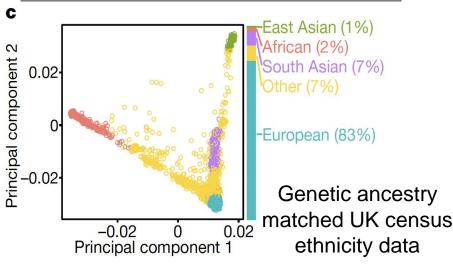
Understanding Rare Diseases is challenging

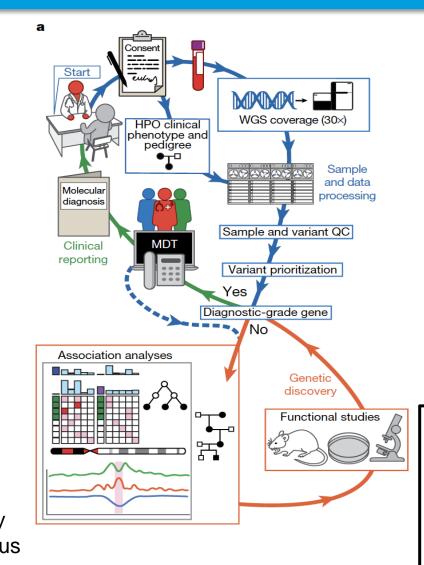
- Many different rare diseases, each affection jC
 - Monogen population and a large - Rare diseases in total affect an estimated proportion of renal failure
 - Each clinician manages few p² some diseases so may lack expertise
 - Most patients do not know for their disease although networks easier to zare form in social media
- Interapies is seen as small
 - Historically unattractive to commercial and academic research funders
- Hard to assemble large enough cohorts to perform studies that are powerful enough to answer important questions robustly
 - Especially true for non-monogenic rare diseases

2 UK initiatives to address these challenges

- NIHR BioResource for Rare Diseases
 NIHR BioResource
- RaDaR the Rare Renal Disease Registry RaDaR

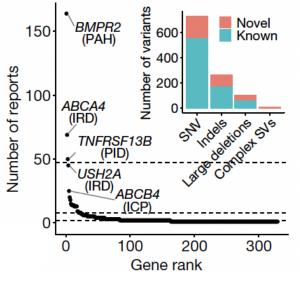


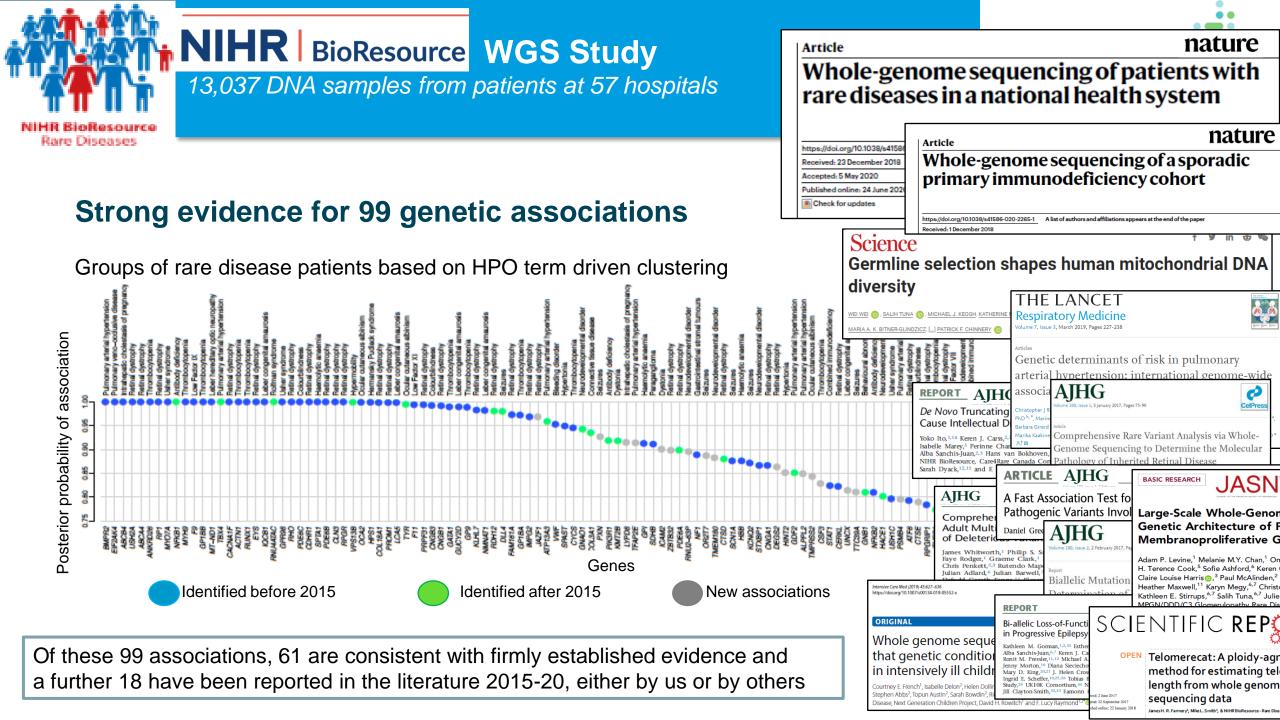

- Different approaches but some commonality:
 - Recruitment from multiple centres across a country
 - Aggregation of large datasets
 - Use of routinely collected hospital record data to enrich dataset



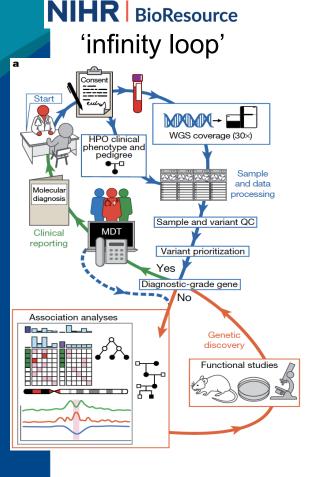
Rare Diseases WGS Study

NIHR BioResource Genomics 13,037 DNA samples from patients at 57 UK hospitals Recruitment 2012-2015




Diagnostic Grade Reports issued for 1100 variants in 329 genes

england



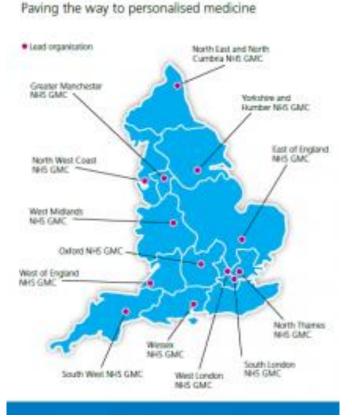
Turro et al Nature 2020

Variation in coverage at disease genes was much greater for WES platforms that would have missed 2.67-10.5% SNVs reported in this study

The 100,000 Genomes Project and beyond

88,597 participants with rare disease or cancer, and their families

NHS



120,239 whole patient genomes records > 30x coverage

┿

phenotyping with HPO codes NHS Genomic **Medicine Centres**

Genomics

englar

Basis for UK-wide clinical Genomic Medicine Service

Data from 100KG beginning to emerge:

- Numerous novel ultrarare disorders •
- Genetic basis of Posterior Urethral Valves •
- *IFT140* as a cause of mild ADPKD
- etc •

RaDaR: Rare Renal Disease Registry RaDaR

- Established by the RA in 2010 and hosted by UKRR with funding from MRC/KRUK/BKPA
 MRC Medical Research UK
- ~100 disorders in 30 Rare Disease Groups (RDGs)
 - Clinicians Research and clinical collaborations
 - Patients Clinical provision, education, drive research
 - Scientists
- Aims to connect clinicians/scientists and patients and to facilitate clinical and academic research

Components of RaDaR

- Comprises a support/clinical management network
 - https://rarerenal.org
 - Clinical guidelines and information for clinicians

RaDaR

- Patient education, communication and details of patient meetings
- Registry summary
- Social media presence (@RenalRadar)
- Patient research register with clinical data
 - All participants give written informed consent for analysis of their clinical records and linkage to their data held in any other research or clinical database
 - Also agree to be contacted about studies they might be eligible for in the future

30,000 participants from 105 hospitals

Rare Disease Cohort	Cohort Size	Lab result Link	
Alport Syndrome	901	711	
APRT Deficiency	<10	<10	
Atypical Haemolytic Uraemic Syndrome	282	221	
Autosomal Dominant Polycystic Kidney Disease	7637	5840	
Autosomal Dominant Tubulointerstitial Kidney Disease (FUAN)	209	157	
Autosomal Recessive Polycystic Kidney Disease/Nephronophthisis	228	170	
BK Nephropathy	51	42	
Calciphylaxis	57	39	
CKD due to Genetic Factors in people of African ancestry	64	33	
Cystinosis	150	127	
Cystinuria	466	307	
Dent Disease and Lowe Syndrome	61	31	
Fabry Disease	46	34	
Fibromuscular Dysplasia	40	25	
HNF1b Mutations	84	52	
Hyperoxaluria	121	94	
Idiopathic Nephrotic Syndrome	4106	3012	
IgA Nephropathy	4134	3502	
Inherited Renal Cancer Syndromes	99	<10	
Membranoproliferative Glomerulonephritis / Dense Deposit Disease	1122	794	
Membranous Nephropathy	2381	1614	
Mitochondrial Renal Disease	<10	<10	
Monoclonal Gammopathy of Renal Significance	173	121	
Pregnancy	672	523	
Pure Red Cell Aplasia	<10	<10	
Retroperitoneal Fibrosis	141	91	
STEC-associated HUS	169	88	
Tuberous Sclerosis	240	129	
Tubulopathy	352	193	
Vasculitis	4621	2890	

https://ukkidney.org/rare-renal/metadata

RaDaR data and the Renal Registry

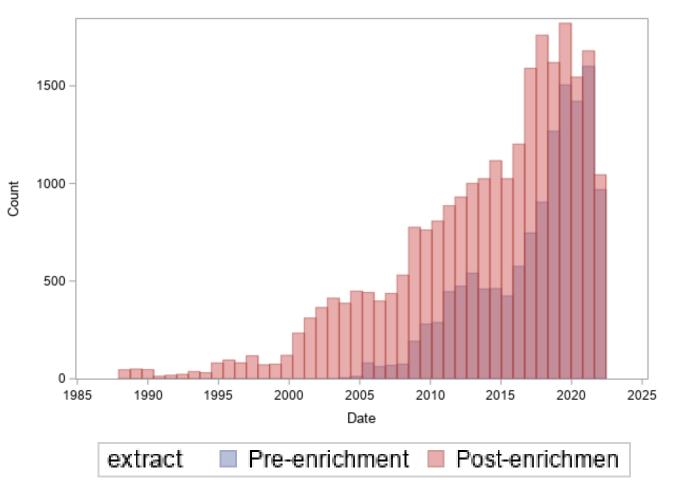
- All data held and processed at the UK Renal Registry
 - Established 1995 to collect data from all UK RRT patients with Section 251 (NHS Act 2006) approval for patient data without consent
 - Aim is to assure quality and consistency of dialysis/transplantation
- RaDaR data is all from research-consenting patients so less stringent controls on use/access/linkage within this robust information governance framework
- UKRR database and informatics infrastructure
 - Automated datafeeds from all renal units in the country
 - Very good capture of initiation of RRT and death

Assembly of a large registry

- Broad, publicly available eligibility criteria for each RDG
- Small payment to each site for each subject recruited to study
 - National Institute of Health Research (NIHR) fund to support recruitment to ethically approved research at NHS sites
 - Sites incentivised to recruit but not resourced to input data
- Manual entry of (very few) mandatory fields at recruitment
 - Development of site-based mechanisms to enrich dataset by automated data transfer
 - Used existing UK Renal Registry Infrastructure to do this (esp lab results/medications)
 - Avoid lengthy wish-list of clinical data entered manually by recruiting sites

Automatic data feed

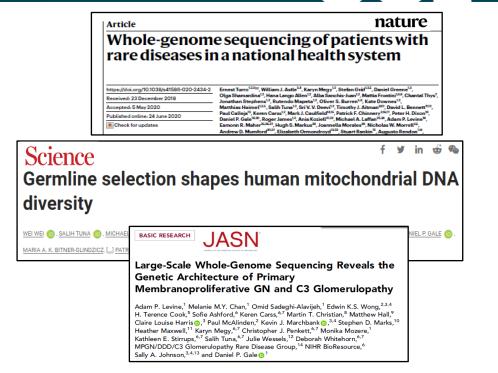
- RaDaR receives daily data feed from renal units
 - All or last 10 historic and all future values for each field
 - >60% of participants linked (increasing)
- Biochemistry and other laboratory results
- Clinic letters, imaging and other reports (variable)
- This feed also goes to Patient View/Patients Know Best to allow participants to access their own data



Data enrichment

With help of informatics staff at sites (especially those recruiting large numbers of patients) laboratory dataset was substantially enriched

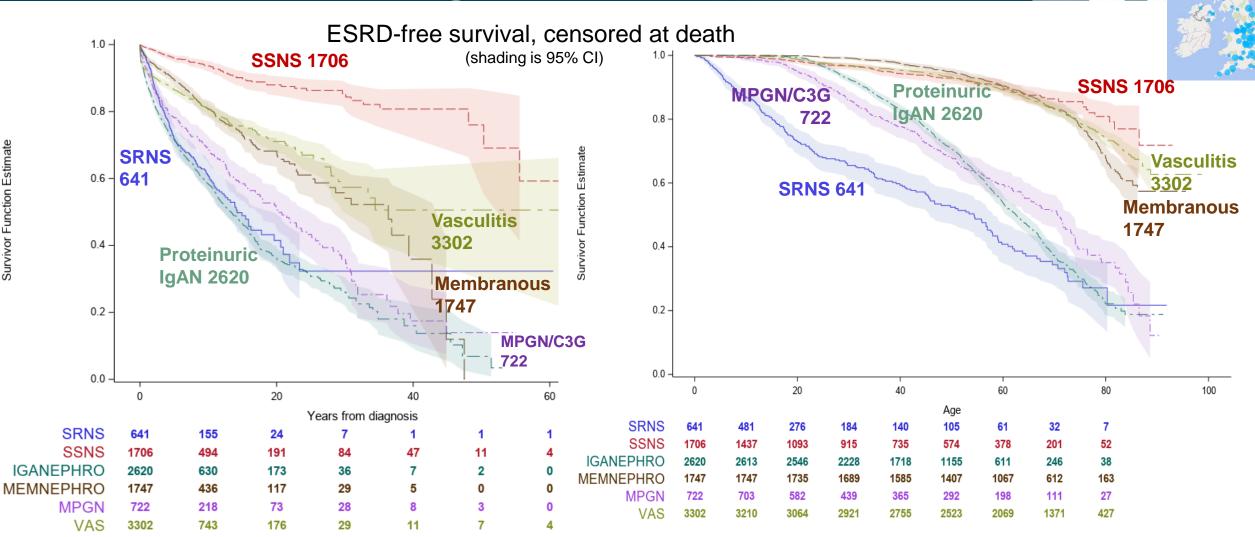
Creatinine values at one site


RaDaR data allows capture of large-scale clinical and renal outcome data

- Age at onset/presentation
- Presenting clinical features
- Medication use
- Rate of progression
- Outcomes including Death and initiation of Renal Replacement Therapy
- Secondary care use (with Hospital Episode Statistics data link)

Types of studies

- Registry study
 - Epidemiology of disease in a defined area
- Genetic association studies
 - Collaboration with **NIHR** BioResource
- Retrospective and prospective longitudinal Cohort studies: Natural History, outcomes and clinical practice
- Randomized Controlled Therapeutic Trials



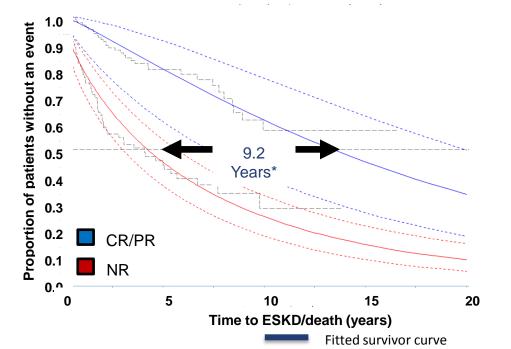
RaDaR Natural History Analysis

- Ascertainment and data collection similar across all disorders so comparisons between them are possible
 - Prevalence/distribution
 - Treatments effect and uptake
 - Outcomes and predictive factors
- Engagement with academic and commercial collaborators
 - In general individual patient-level data is not shared unless compelling scientific case for doing so
 - For commercial partners our statistician answers their questions using our data

Renal outcomes – glomerular diseases

NB Ascertainment and survivor biases operate - recruitment 2010 onwards RAS blockade/IS but not SGLT2i in common use over this timeframe

Unpublished RaDaR data


RaDaR

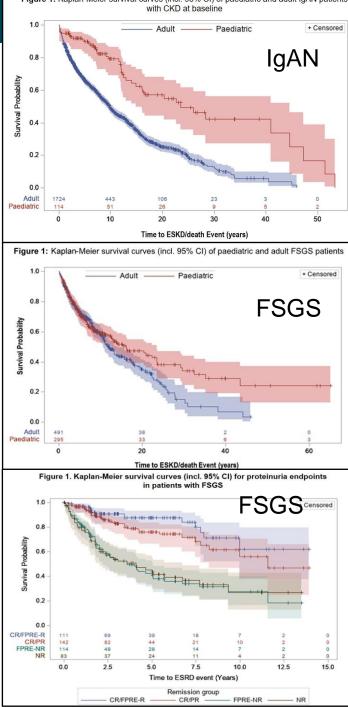
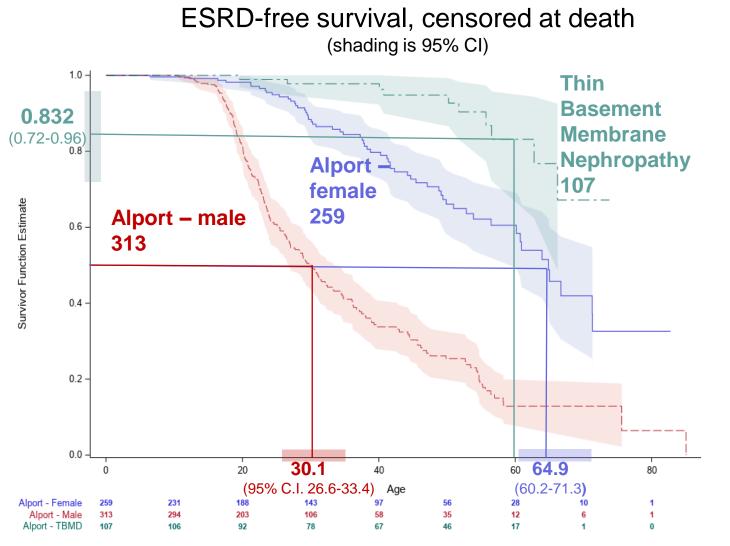


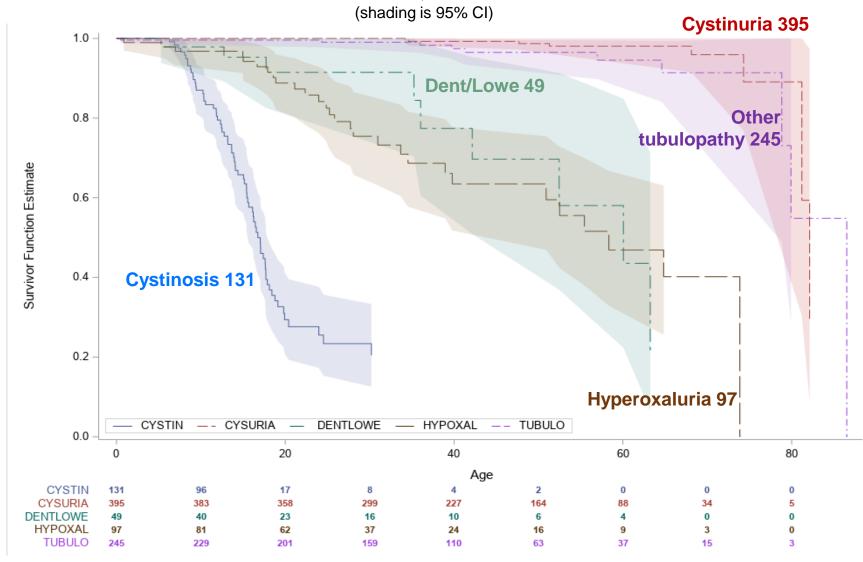
Figure 1: Kaplan-Meier survival curves (incl. 95% CI) of paediatric and adult IgAN patients

Commercial collaboration


- Looked at renal survival in children and adults with IgAN and NS with biopsy-proven FSGS
- Also looked at association of proteinuria response and renal survival in FSGS
 - Presented at ASN in 2021: PO1529, PO1530, PO1577

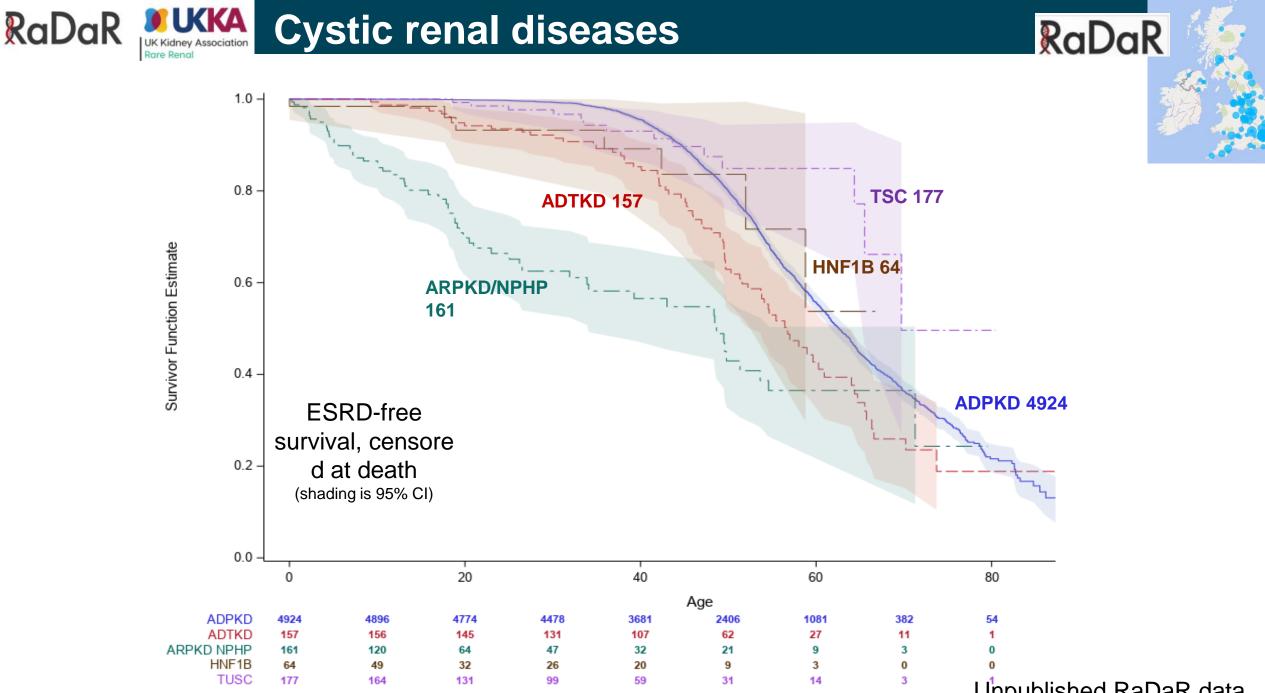
Alport Syndrome

- Median age at RRT in Alport Syndrome: 30.1(male) and 64.9 (female)
- For TBMN 83.2% have not required RRT before age 60

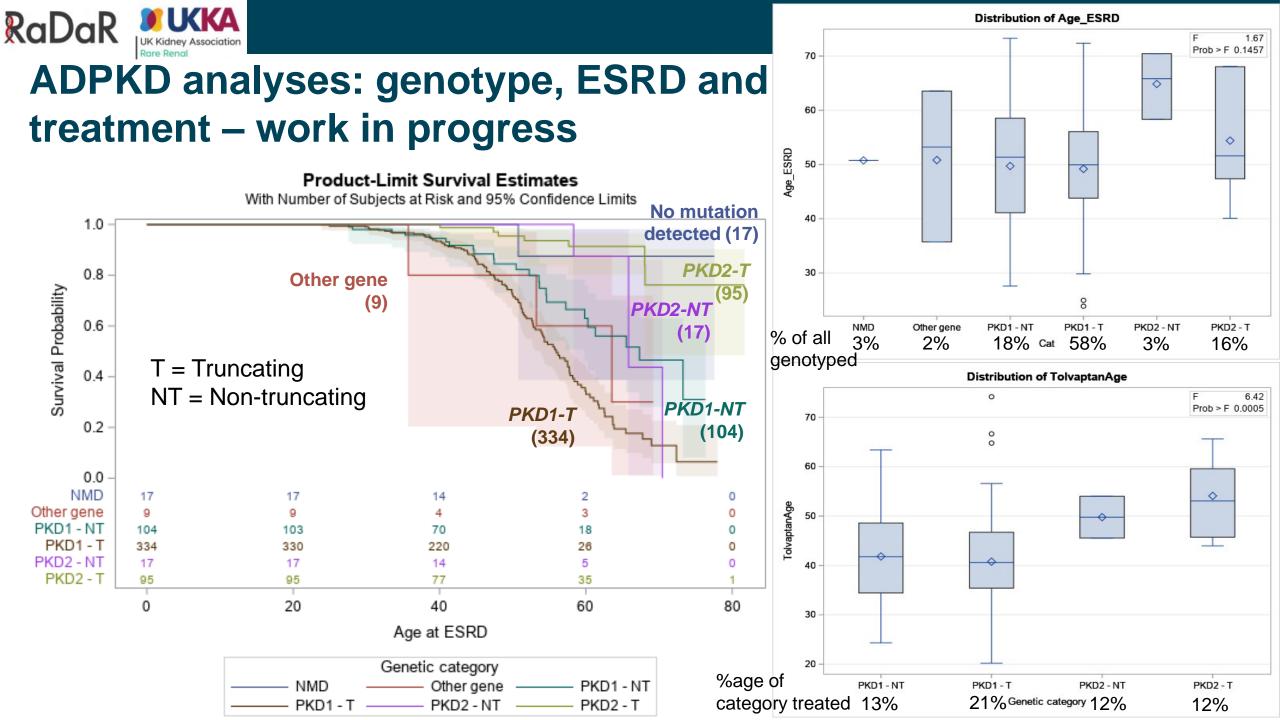

Ascertainment and survivor biases both possible

Unpublished RaDaR data

Tubular diseases



ESRD-free survival, censored at death



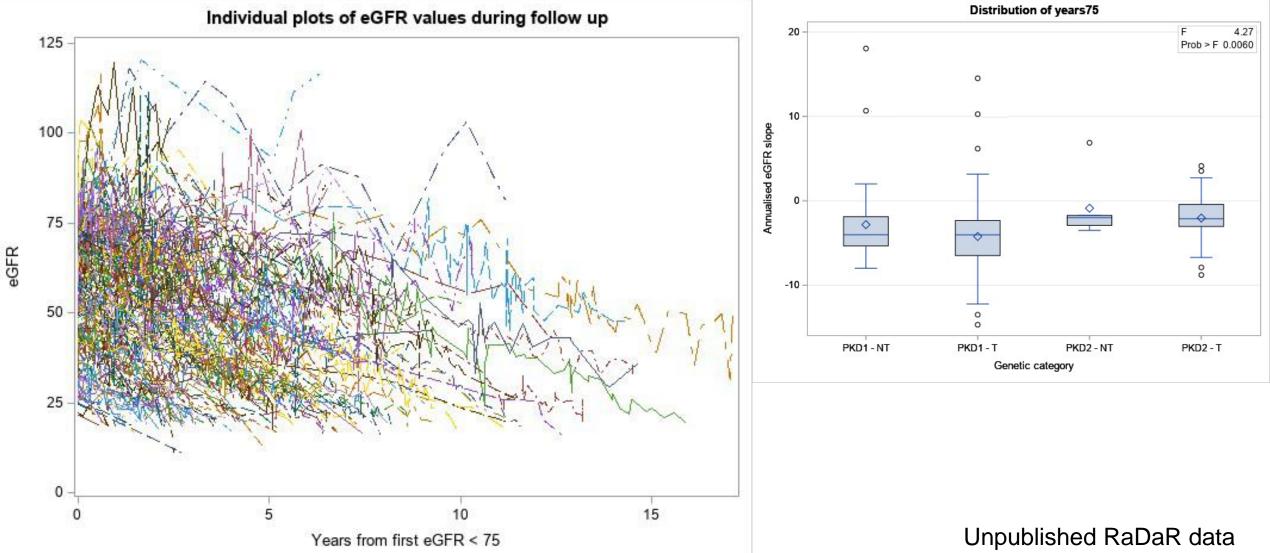
Unpublished RaDaR data

RaDaR

Unpublished RaDaR data

Rate of eGFR loss (ml/min/year) from first reading below 75 ml/min

Adult at time of diagnosis


Child at time of diagnosis

RaDaR

Disease	Ν	Median	Disease	Ν	Median
Autosomal Dominant Polycystic Kidney Disease	1622	-3.62	Steroid Resistant Nephrotic Syndrome	144	-11.6
IgA Nephropathy	931	-2.86	Steroid Sensitive Nephrotic Syndrome	86	2.52
Vasculitis	929	-0.15	MPGN/C3G	59	-0.67
Membranous Nephropathy	725	-1.83	ADPKD	57	-3.17
Steroid Sensitive Nephrotic Syndrome	384	-0.40	Cystinosis	38	-4.82
Steroid Resistant Nephrotic Syndrome	91	-2.99	ARPKD/Nephronophthisis	18	-1.51
MPGN/C3G	167	-2.50	Vasculitis	16	-2.01
Cystinuria	119	0.36	IgA Nephropathy	14	-7.44
Alport Syndrome	107	-2.38	Alport Syndrome	12	-8.95
Pregnancy	98	-1.72	Tuberous Sclerosis	12	-1.98
ADTKD	42	-2.81			
Retroperitoneal Fibrosis	42	0.33	NB In SHARP CKD study rate of eGFR loss was <2ml/min/year		
Monoclonal Gammopathy of Renal Significance	39	-5.81	(Hayne	es et al JA	SN 2014)
ARPKD/Nephronophthisis	20	-2.08			
Atypical Haemolytic Uraemic Syndrome	19	1.59			
Tubulopathy	19	-0.71			
HNF1b Mutations	14	-0.90			
Tuberous Sclerosis	13	-1.49	Unpublishe	ed RaDa	aR data

ADPKD: eGFR loss between 75 and 20 ml/min

RaDaR can help design clinical trials

- Reveals diseases with particularly great unmet medical need
- Allows large-scale studies of natural history/outcomes
 - Where eGFR decline is rapid this might be a feasible trial endpoint
 - This information particularly important to regulators considering new therapies
- Identify number and proportion of RaDaR participants with particular genetic/phenotypic features, allowing feasibility of clinical trial to be assessed by biotech/pharma companies

SSNS

Membranous

/asculitis

0.8

- Also allows estimation of eventual market size
- Can reveal gaps in knowledge of natural history

RaDaR can help deliver clinical trials

• RaDaR holds geographical distributions

RaDaR

- Integration with clinical data allows identification of sites with patients likely to be eligible for clinical trials
- RaDaR consent includes participants' permission to be contacted to inform them of trials that are relevant to them
 - Patients informed how to contact sites recruiting to studies they are potentially eligible for
 - This is an important motivator for many people to sign up to RaDaR
- Active collaborations to improve recruitment to interventional studies are in place and proving successful in enabling recruitment

RaDaR Summary

- Powerful source of real-world data about patients with rare renal diseases
- Linking RaDaR data with clinical/research genomic data can reveal robust associations in rare diseases
- Catalyst for clinical trials and therapeutic development
- Much more to do:
 - Genomic, multi-omic/biomarker and interventional studies
 - Linking with Hospital Episode Statistics and other data sources to enrich data on non-renal co-morbidities
 - Socio-economic deprivation associations
 - Ancestry, ethnicity and pharmacogenomic associations
 - International collaborations will be needed for insights into rarer disorders

Take home messages

- Studying rare diseases in an era when powerful molecular techniques (eg WGS) are widely available requires large, adequately controlled cohorts to gain important new insights
- Early and full engagement with patient groups has provided powerful momentum
- Assembling cohorts and collecting rich enough phenotypic dataset has required distributed recruitment and participation across disease areas and on a National scale
 - One day the scale required will be Continental, then Global
- Big data collection/processing and analysis presents its own challenges

Acknowledgements

- RaDaR participants and their families
- Rare Disease Group members and
- patient representatives
- Kate Bramham, Garry King, David Pitcher
- Retha Steenkamp, Ron Cullen
- Detlef Bockenhauer, Mark Taylor

https://rarerenal.org

@RenalRadar

Kidney) Research UK

NIHR BioResource

Adam Levine Willem Ouwehand Chris Penkett Kathy Stirrups Ernest Turro

