

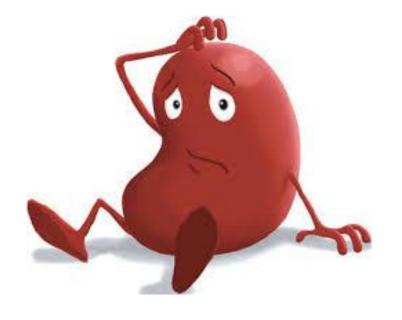
Dr S Grangé, Néphrologie CHU Rouen, Site constitutif MAT

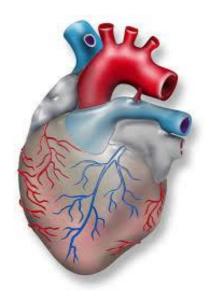
steven.grange@chu-rouen.fr

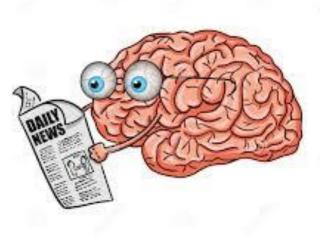
Conflicts of interests

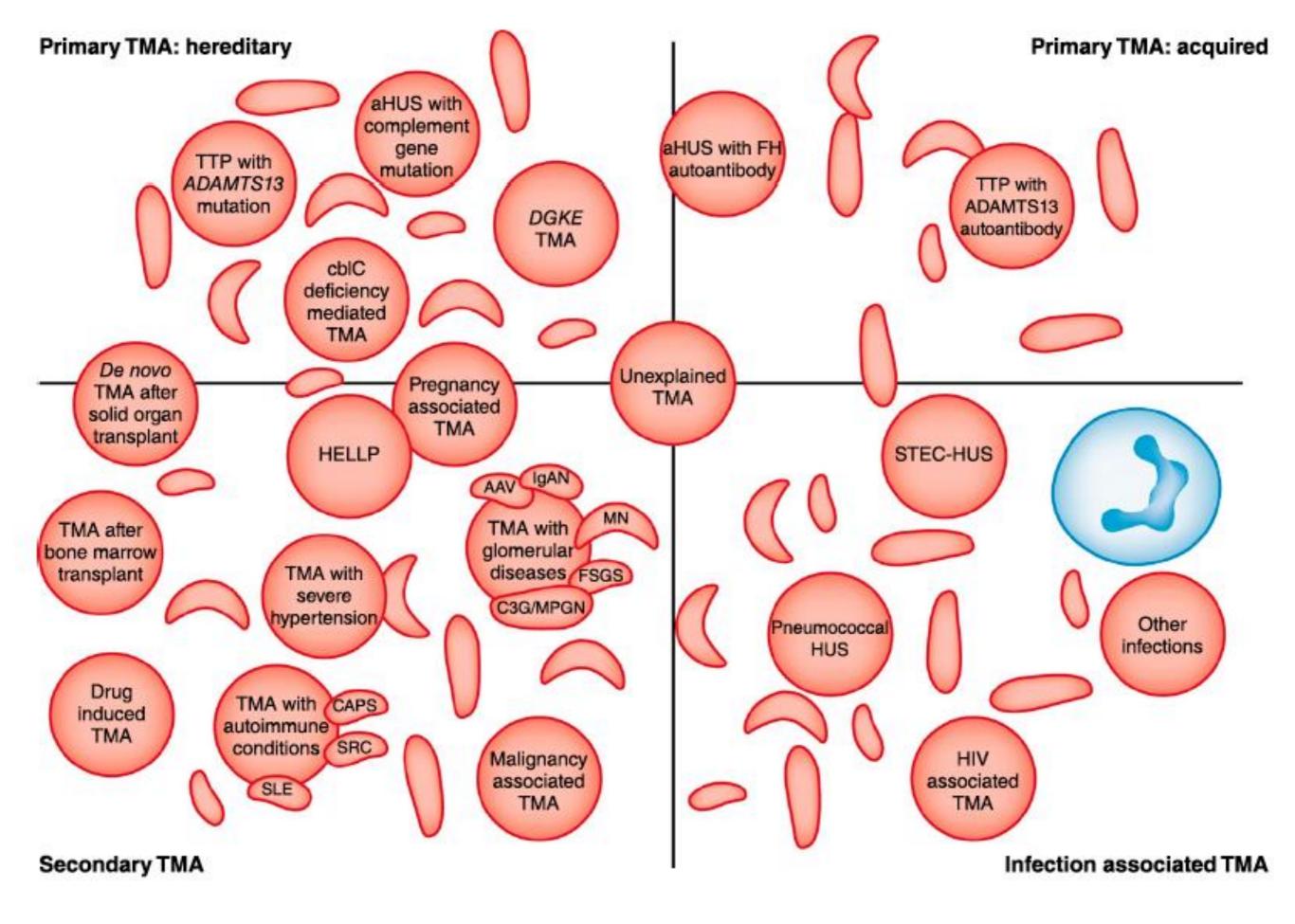
Fees for board membership or symposia: Alexion, Octapharma, Sanofi

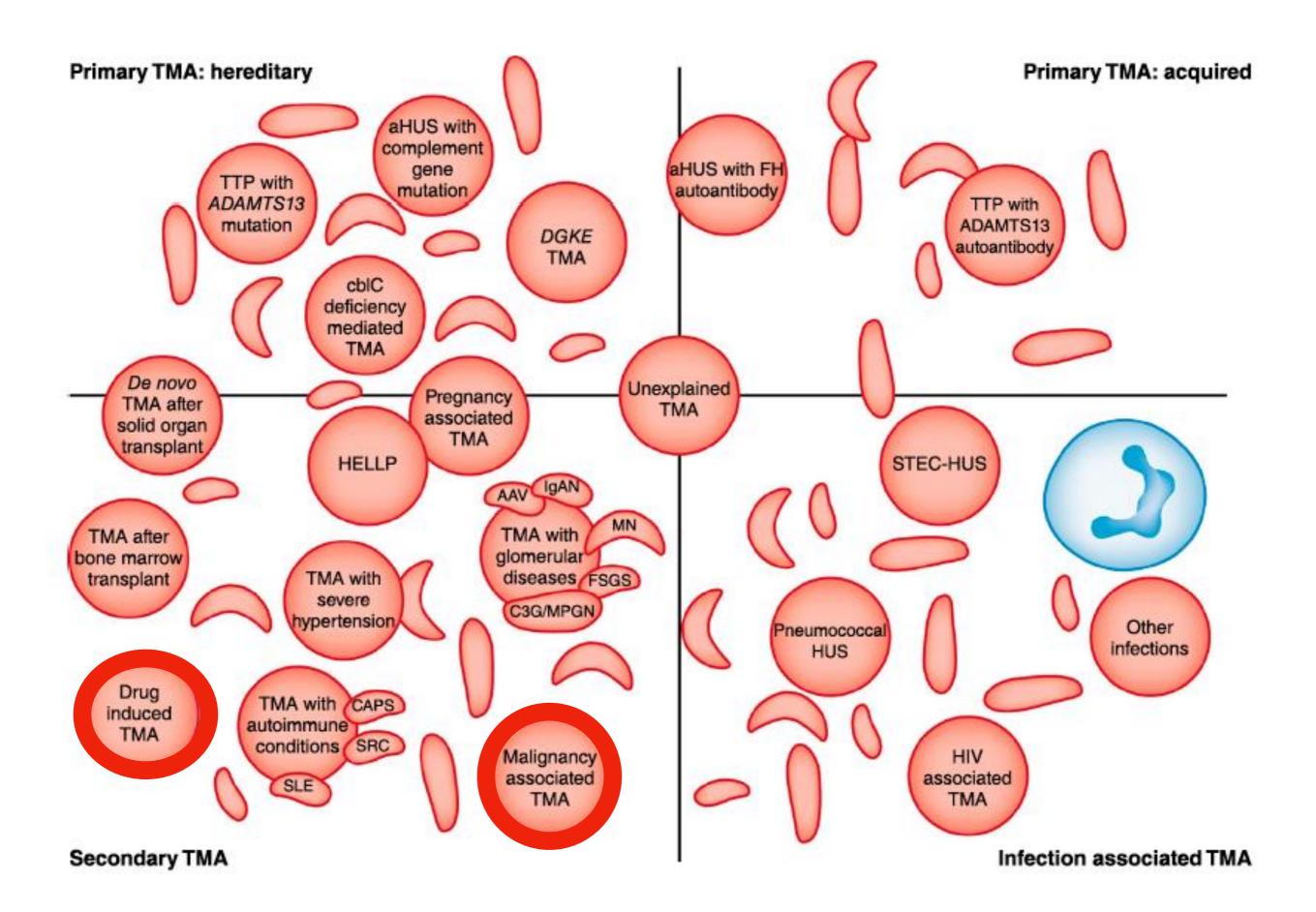
Travel support: Alexion, Octapharma, Sanofi

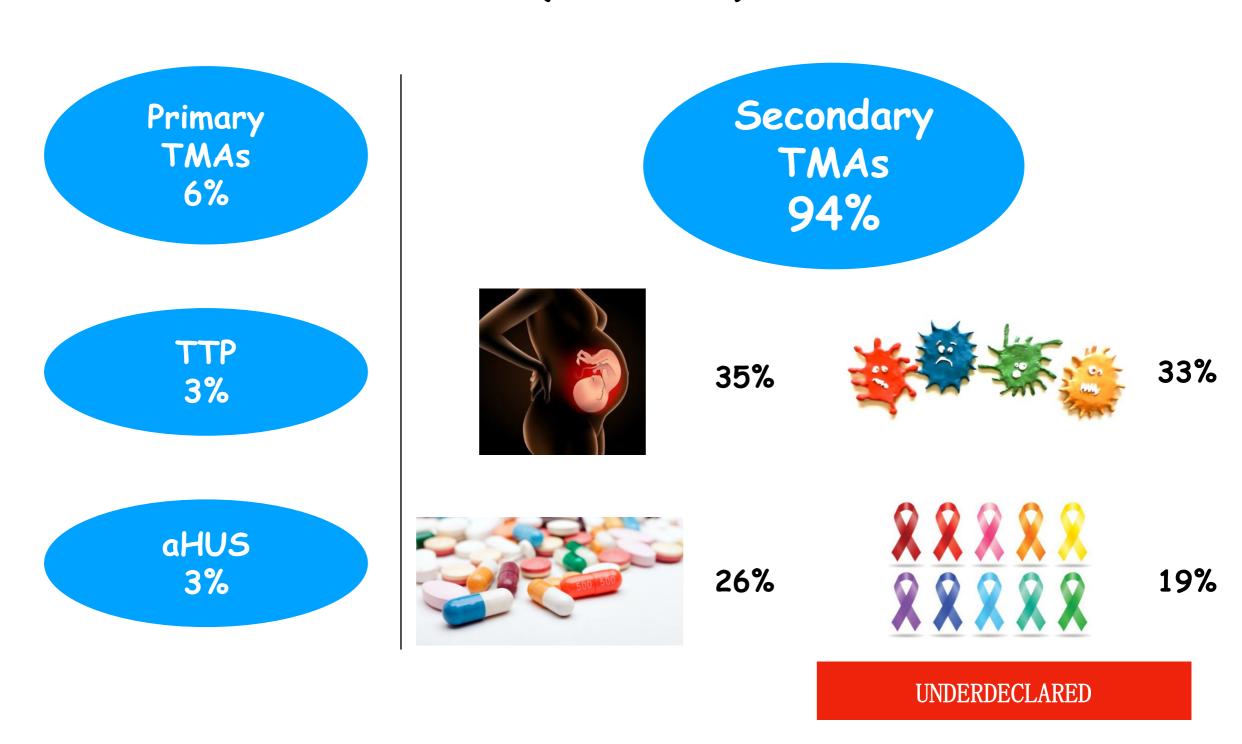


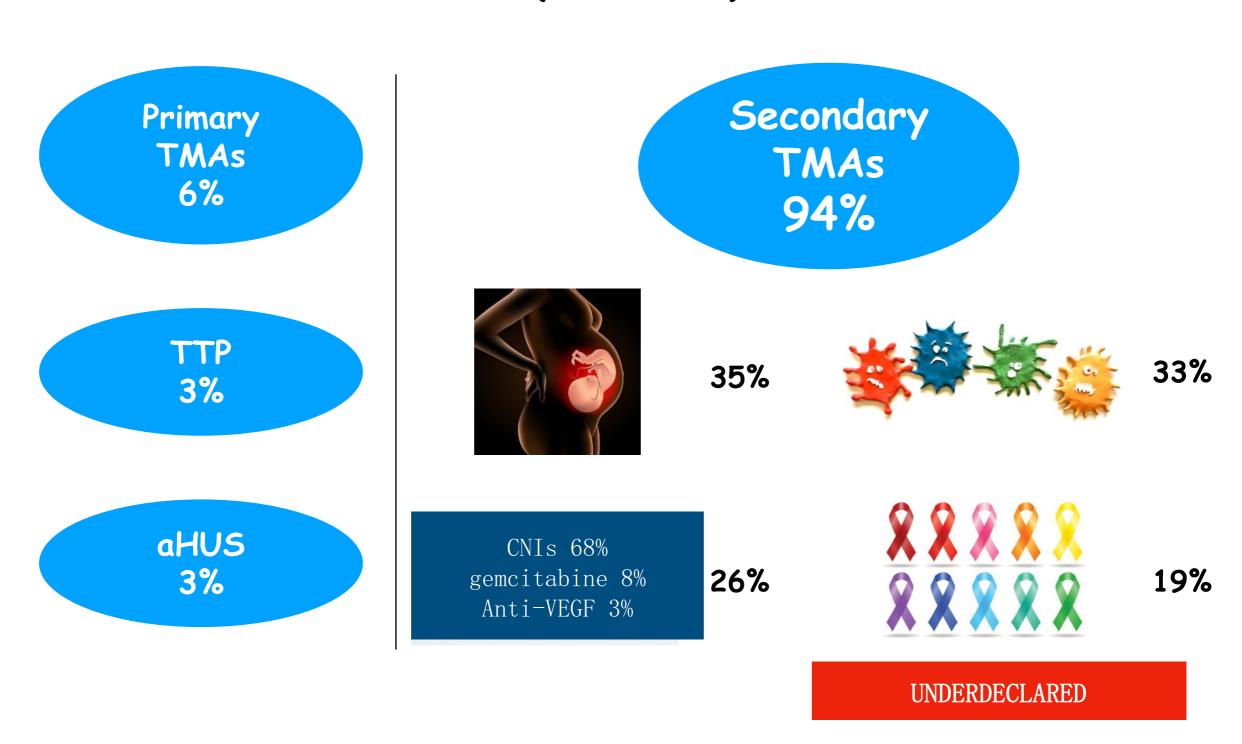

What is TMA?


Microangiopathic hemolytic anemia

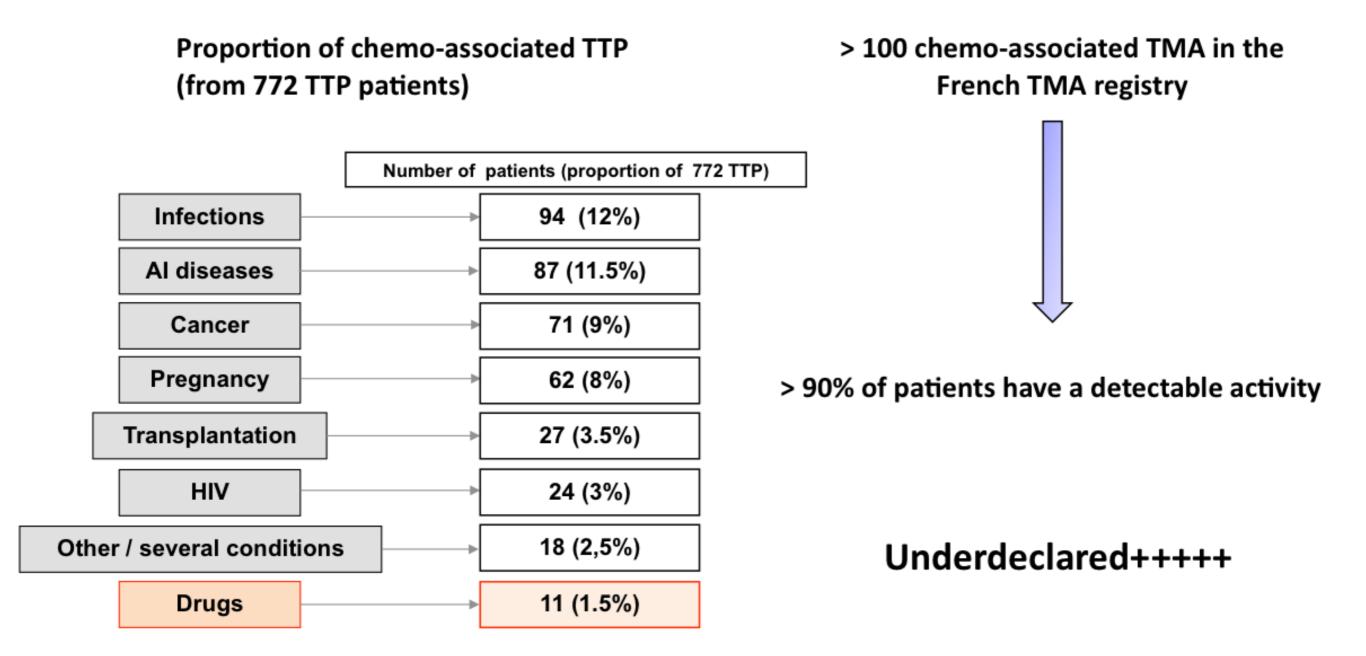

Peripheral thrombocytopenia


Organ failure of variable severity



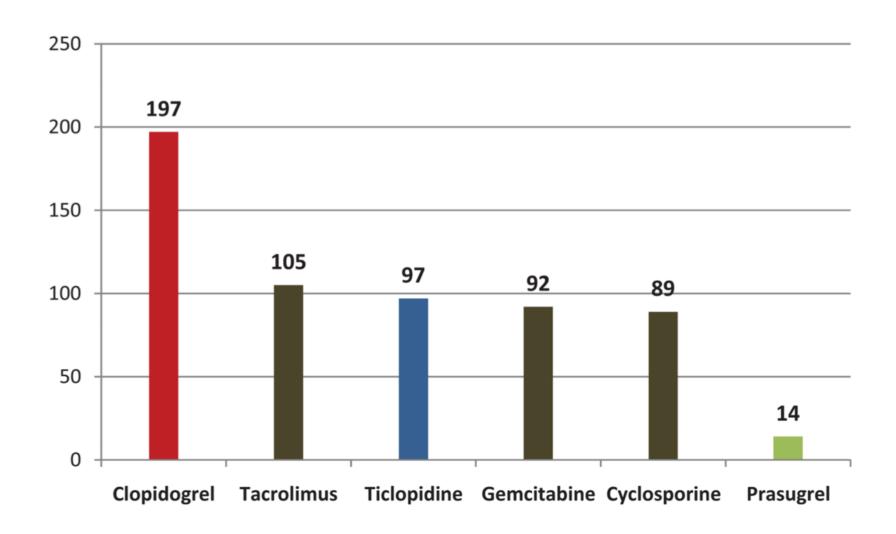

Etiologies et pronostic des microangiopathies thrombotiques

Rretrospective study: 564 consecutive patients between 2009 and 2016 (CHU Tours)



Etiologies et pronostic des microangiopathies thrombotiques

Rretrospective study: 564 consecutive patients between 2009 and 2016 (CHU Tours)



Epidemiology: burden of patients

Most chemo-associated TMA have a detectable ADAMTS13 activity (= not TTP)

Epidemiology

Drugs and number of cases reported to FDA between 1998 and 2011

Ticlopidine: Incidence 0.01%, Low adamts 13 activity in 80% and anti adamts 13 antibodies 100%

(2-12 weeks) -> Plasmapheresis, no relapse

Clopidogrel: Incidence 0.001%, different mechanism, < 2 weeks

Drug-induced thrombotic microangiopathy: Experience of the Oklahoma Registry and the BloodCenter of Wisconsin

Jessica A. Reese,¹ Daniel W. Bougie,² Brian R. Curtis,² Deirdra R Terrell,¹ Sara K. Vesely,¹ Richard H. Aster,² and James N. George¹,³*

TABLE II. Reassessment of Oklahoma Registry Patients Who Had Been Previously Assigned to the Drug-induced Category

		Categories determined by re-assessment (number of patients)						
Drug	Total number of patients	Definite	Probable	Possible	Unlikely			
Immune-mediated TMA								
Quinine ^a	25	19	1	5	_			
Ticlopidine	2	_	-	2	_			
Clopidogrel	1	_	-	1	_			
Trimethoprim-sulfamethoxazole ^b	1	_	1	_	_			
Alendronate ^c	1	_	-	1	_			
Dose-dependent toxicity-mediated TMA								
Mitomycin	11	_	-	11	_			
Cyclosporine	4	_	_	4	_			
Tacrolimus	4	_	_	3	1			
Gemcitabine	3	1	-	2	_			
Carmustine	1	_	-	1	_			
Cocained	1	_	_	1	_			
Cytarabine	1	_	-	1	_			
"Ecstasy" ^e	1	_	_	1	_			
Pentostatin	1	1	-	_	_			
Taxotere	1	_	-	1	_			

1988-2014

Quinine-Induced Thrombotic Microangiopathy: A Report of 19 Patients

Evaren E. Page, MPH, 1,2 Dustin J. Little, MD,3 Sara K. Vesely, PhD,1 and James N. George, MD1,2

19 patients from the Oklahoma Registry 1989-2015

18 with quinine-dependent antibodies reactive with platelets and/or neutrophils

18 women / 19 patients

Quinine exposure: Pill form for 18 patients and tonic water for 1

Abnormalities not characteristic of TTP: neutropenia, DIC, liver function abnormalities

17 of the 18 surviving patients required dialysis

14 developed CKD

Update 2014-2018

TABLE 1 Drug-induced thrombotic microangiopathy (TMA), 2014-2018: 8 drugs with definite evidence supporting a causal association with TMA that had not been previously reported with definite evidence

Drug	Patients (no.)	Comments
Opioids		
Oxymorphone (Opana ER)	28	9 reports, 28 patients. 1 report ³ described 18 episodes of Opana ER-induced TMA in 15 patients in one hospital for 14 months. 1 report ⁴ documented that polyethylene oxide (PEO), an inert ingredient added to Opana ER tablets to deter IV abuse, was the etiology, not the opioid.
Oxycontin	3	3 reports. Oxycodone reformulated with the addition of PEO was introduced in Australia in 2014. These 3 reports were published in 2015–2017, each describing 1 patient. The presumed etiology of TMA was PEO, the same as with Opana-ER.
Proteasome inhibitors		
Bortezomib	1	In this report, sonly patient 3 had sufficient data for evaluation; he had recurrent TMA when bortezomib was resumed 18 months after his initial episode. 2 additional patients with TMA attributed to bortezomib were only presented in a table.
Carfilzomib	4	3 reports. In the Yui et al.'s report, only patient 11 had sufficient data for evaluation; he had recurrent TMA twice with 2 recurrent doses of carfilzomib. Seven additional patients with TMA attributed to carfilzomib were only presented in a table.
lxazomib	1	This patient only received one dose of ixazomib. The authors suggested that the adverse reaction manifested as TMA may be a class effect of proteasome inhibitors.
Cyclin-dependent kinase (CDK4, CDK6) inhit	pitor	
Palbociclib	1	TMA occurred after 2 weeks of daily palbociclib. The patient also received fulvestrant, which had been given continuously for the previous 3 years.
Blood product		
Intravenous immunoglobulin (IVIg)	2	1 report. Both patients had kidney allograft failure and BK viremia. IVIg was given to treat BK infection and facilitate immunosuppressive dose reduction. Symptoms promptly followed infusion. Authors speculated that TMA may be related to the brand of IVIg.
Anticonvulsive agent		
Valproic acid	1	Valproate commonly causes thrombocytopenia by dose-dependent marrow suppression. In this patient, TMA occurred during valproic acid intravenous infusion when serum levels (130-137 µg/mL) exceeded the therapeutic range (50-100 µg/mL).

How to distinguish antineoplastic drug-associated TMA from cancer-associated TMA

An	tineoplastic drug-associated TMA	Cancer-associated TMA
Wasting, weight loss, bo	ne pain 0	+++
Hypertension	+++	0
Pulmonary symptoms	++	+
Renal insufficiency	++	±
ADAMTS13	Normal/detectable	Normal/detectable
Tear drop cells Erythroblasts	0	+++
DIC	0	++
Treatment	Stop chemo	Start chemo

Mitomycin C-associated TMA

Medina et al., Curr Op Hematol 2001

Table 3. Clinical characteristics of patients with mitomycin C-associated thrombotic thrombocytopenic purpura-hemolytic uremic syndrome

	Lesesne [11]*	Snyder [21]*	Sheldon [12]*	Cantrell [17]*
Number of patients	85	55	39	12
Chemotherapy regimen				
included mitomycin C	99	93	82	100
Cumulative dose of mitomy	ycin			
C >40 mg	99	NR	NR	100
Sex (% female)	59	78	59	58
Primary site of carcinoma				
gastric	26	9	44	50
breast	18	44	9	8
colorectal	16	22	20	8
Clinical features				
pulmonary	65	NR	49	100
neurologic	16	NR	18	25
Laboratory features				
microangiopathic				
hemolytic anemia	100	95	90	100
thrombocytopenia	100	78	92	100
renal failure	100	78	92	100
Death	74	55	72	83

^{*}All values except number of patients are percentages. NR, not recorded.

TMA in 2% to 15% of patients receiving MMC

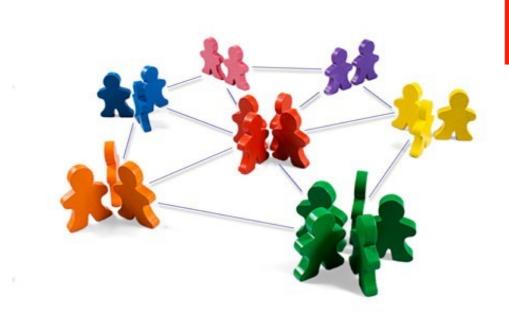
Clinical features typically occur 4 to 8 weeks after the last MMC infusion

Usual cumulated dose > 40 mg

Lung involvement is a frequent feature+++

- Dyspnea
- Lung oedema
- Respiratory distress

Renal failure if cumulated dose > 50-70 mg


ADAMTS13: normal or mildly decreased

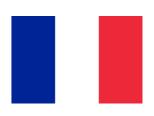
Diffuse endothelial lesions induced by the drug

Poor response to plasma exchange ± immunoadsorption

Poor prognosis; death at ~ 4 months

Appel à observations MAT et Mitomycine +/- eculizumab

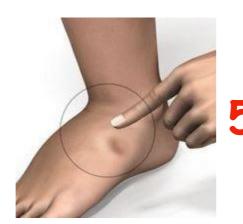
Clément Maho (interne DES néphrologie Strasbourg) Pr Bruno Moulin


Rouen, Lille, Amiens, Toulouse, Strasbourg

Merci à tous les acteurs de ce projet

steven.grange@chu-rouen.fr

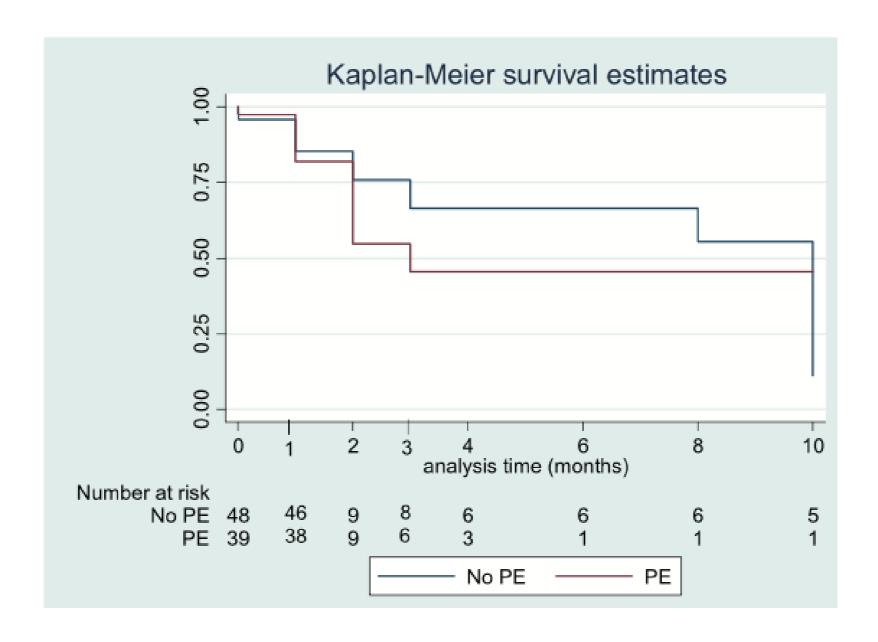
cecile.cugnart@chu-rouen.fr

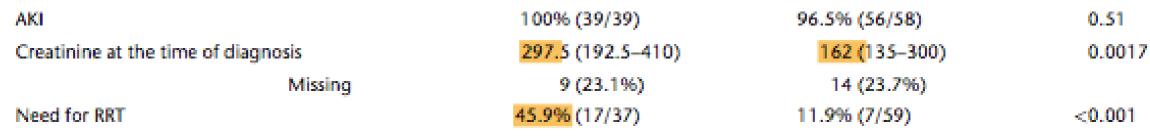

GEMCITABINE-induced TMAs

Retrospective study, 1998-2015 French Pharmacovigilance network + French TMA Reference Center + Complement Alternative Pathway Registry HEGP VFB

n = 120

210 days of treatment (median) Cumulative dose of 13 g/m2




GEMCITABINE-induced TMAs

		Patients (n = 120)
Type of treatment	Cessation of gemcitabine	100% (52/52)
	Anti-hypertensive treatment	57.4% (54/94)
	Plasma exchange	39.8% (39/98)
	FFP infusion	21.4% (21/98)
	Steroids	15.3% (15/98)
	Eculizumab	5.1% (5/98)
Response to treatment	Complete remission	42.1%
(n = 95)	Haematological remission only	23.1%
	Absence of remission	34.7%
Non-lethal serious	Haemorrhage	11.5% (9/77)
adverse events	Infection	11.5% (9/77)
Death		54.7% (29/52)
Main cause of death	Cancer evolution	34.5%
(n = 29)	TMA	65.5%

GEMCITABINE-induced TMAs

Renal characteristics

RESEARCH Open Access

Eculizumab in gemcitabine-induced thrombotic microangiopathy: experience of the French thrombotic microangiopathies reference centre

Maximilien Grall^{1,2}, Florence Daviet^{3,2}, Noémie Jourde Chiche^{3,2}, François Provot^{4,2}, Claire Presne^{5,2}, Jean-Philippe Coindre^{6,2}, Claire Pouteil-Noble^{7,2}, Alexandre Karras⁸, Dominique Guerrot⁹, Arnaud François¹⁰, Ygal Benhamou^{11,2}, Agnès Veyradier^{12,2}, Véronique Frémeaux-Bacchi^{13,2}, Paul Coppo^{14,2} and Steven Grangé^{1,2*}

Objectives and methods

Describe clinical characteristics of patients and outcome of patients presenting a gemcitabine-induced TMA treated by eculizumab

Observational, retrospective, multicentric French study between 2011 and 2016

Inclusion criterion: gemcitabine-induced TMA treated by eculizumab

Exclusion criterion: TMA attributed to paraneoplastic TMA

Methods

Definitions of outcome:

Hematological remission:

normalization of hematological value (platelet count and LDH level)

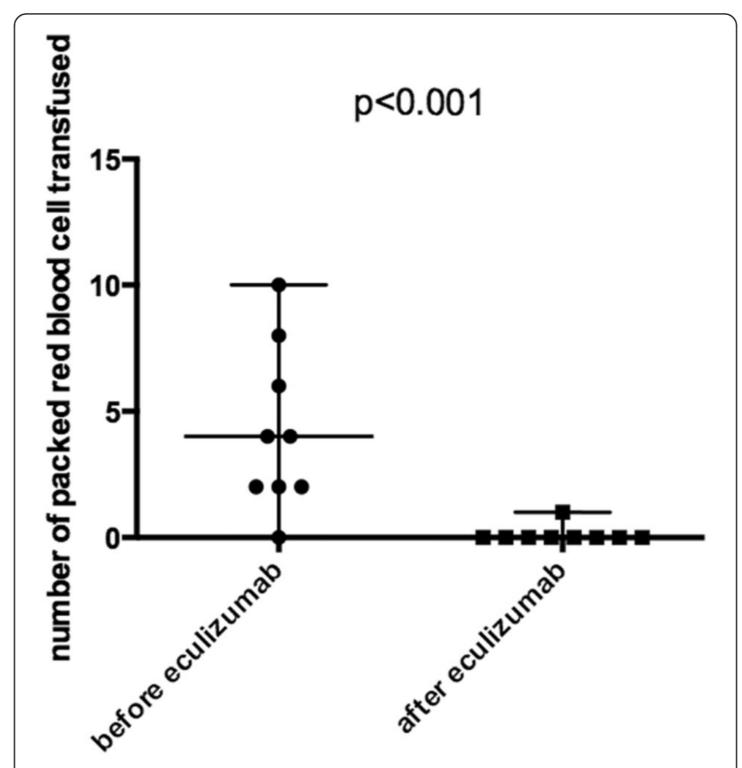
Renal remission:

- > Complete if serum creatinine level returned to baseline
- > Partial if serum creatinine level decreased by 15%

Baseline characteristics (1)

12 patients were included

AKI 100% (stage 3 KDIGO 58%), RRT 17% Hypertension 92%, diffuse oedema 83%


Median time from gemcitabine initiation to occurrence: 6 months (range 1.7-16)

Cumulative dose: 27.5 g (range, 9.0-48)

Treatment

- Eculizumab was started after a median of 15 days (range, 4-44)
- Median number of injections: 4 (range, 2-22)
- 5 patients had previously plasma exchanges with no or incomplete efficacy (median 7 PE; range, 4-9)

Fig. 2 Comparison of packed red blood cell transfusion before and after eculizumab therapy. Quantitative values are expressed as median with range

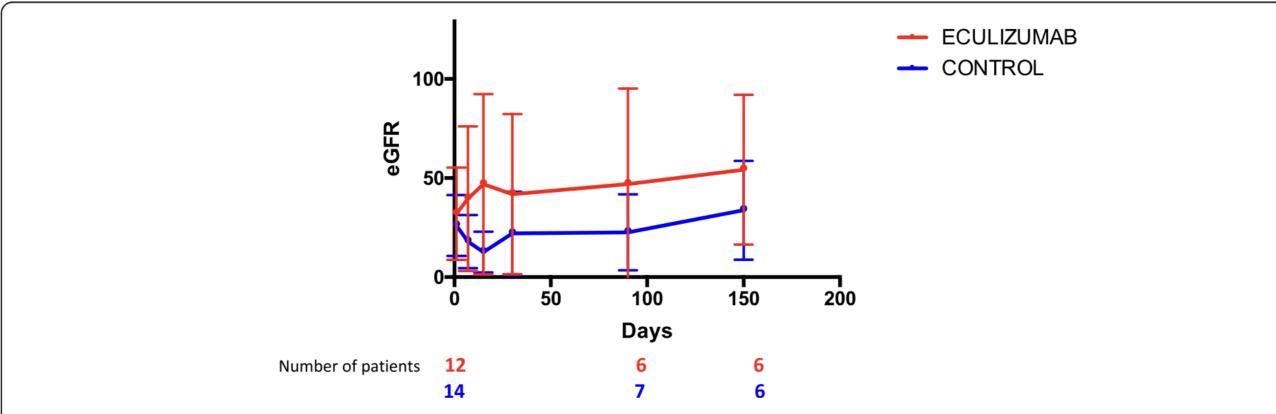
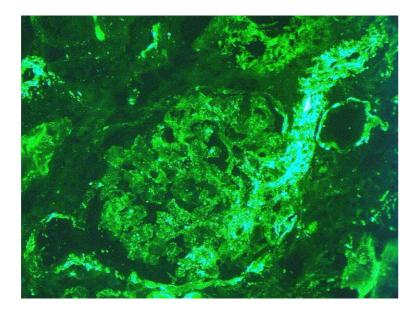
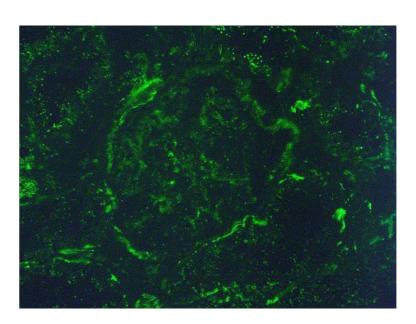


Fig. 3 Evolution of renal function as a function of time in the eculizumab group and in the control group. Values expressed as mean and standard deviations

Table 3 Outcome of patients


	Eculizumab group N = 12 (%)	Control group $N = 14$ (%)
Renal response	10 (83)	9 (64)
Partial	8 (66)	6 (43)
complete	2 (17)	3 (21)
eGFR at onset (ml/min/1.73m ²⁾	19 (0–76)	12 (0–31)
eGFR at the end of follow up	45 (0–119)	33 (0–66)

eGFR Estimated glomerular filtration rate. Quantitative values are expressed as median with range


C5b9 expression on kidney biopsies

Three patients had a kidney biopsy:

Overexpression of C5b9 in the glomerular and tubular membrane and in capillary wall

Gemcitabine-induced TMA

Minimal change disease

Is secondary TMA related to complement dysregulation?

Retrospective study, 1999-2017 aHUS French Registry HEGP VFB n = 110 (Drugs 29%, Autoimmune disorders 24%, Inf° 17%, Malignancies 10%, Glomerulopathies 9%, Transplantation 8%, Pancreatitis 3%)

Low C3 = 9 Low C3 and C4 = 8 (9 lupus)

Rare Variants (< 0.1%)
n = 6 (3 FH, 1 FI, 2
THBD)
Pathogenic variants n =
2

No difference in healthy individuals

However, the homozygous MCP haplotype ggaac was more frequently found in patients with secondary HUS compared with control subjects (17% VS 6%)

Is secondary TMA related to complement dysregulation?

aHUS and secondary TMAs

Distinct presentations

No common genetic risk factors Secondary TMA is an acute non relapsing form of HUS

Transient complement activation? (low C3 15%)
Systematic screening for complement gene variants not warranted in patients in patients with secondary TMA
Interest of C5 blockade (n = 38) -> Same prognosis despite more severe patients

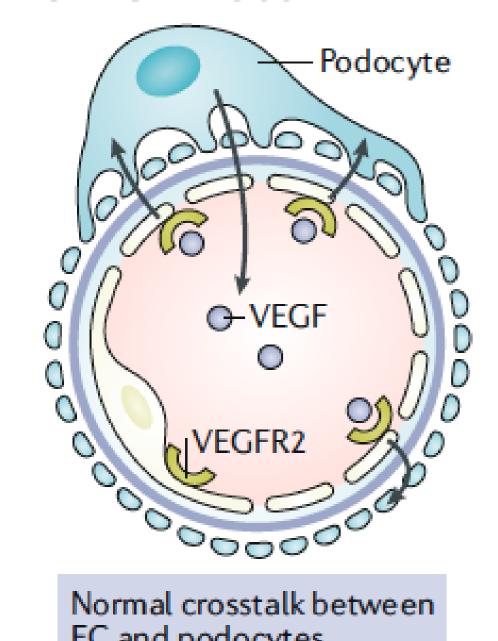
Kidney Diseases Associated With Anti-Vascular Endothelial Growth Factor (VEGF)

An 8-year Observational Study at a Single Center

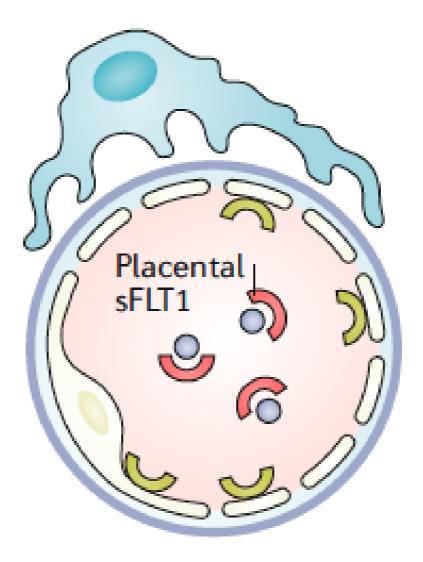
DIAGNOSTIQUE	MAT, n=73	LGM/HSF, n=21
ıVEGF	66 61 bevacizumab	1
TKI	3	20
DELAI (MOIS) MÉDIANE RANGE	3 0,25 - 26	2 0.25 - 30
CLINIQUE	HTA 83% - DFG N Pu 2.6 g/j Pu<1g: 31%	HTA 48% - DFG N Pu 3.15 g/j Pu<1g : 30%
SUIVI (MOY EN MOIS) SURVIE	15 53 %	13 26 %

Izzedine et al. Medicine 2014

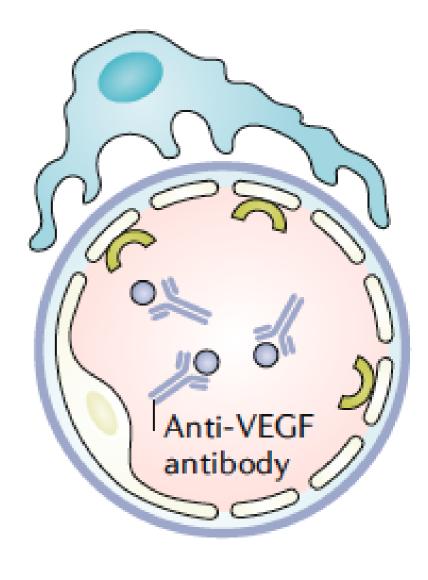
anti-VEGF-induced TMAs


Eremina: 6 patients treated with bevacizumab, reversibility of TMA after cessation of treatment

Mice: Conditional gene targeting to delete VEGF from renal podocytes -> profound thrombotic glomerular injury


Hypothesis: Authors posit that a loss of VEGF from the glomerulus leads to a loss of the healthy fenestrated phenotype and promotes the development of microvascular injury and thrombotic microangiopathy.

 Improvement after cessation of treatment +++, need for multidisciplinary consultation to know if treatment can be continued (or not)


b VEGF inhibition

Normal crosstalk between EC and podocytes

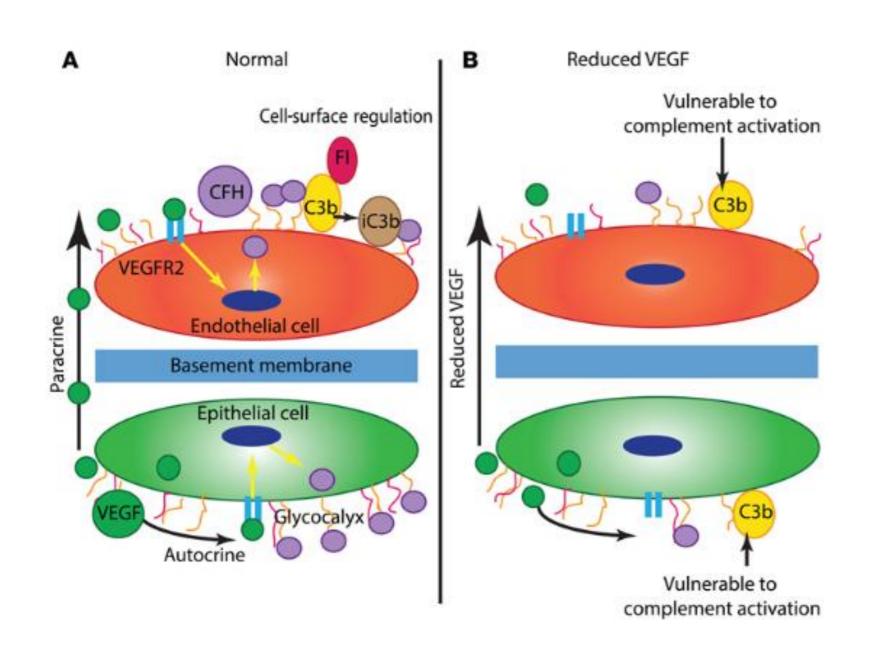
Pre-eclampsia (increased sFLT1)

Anti-VEGF therapy

Original Articles

All anti-vascular endothelial growth factor drugs can induce 'pre-eclampsia-like syndrome': a RARe study*

RARe Registry: Reins sous ttt Anti VEGF Registre
22 patients with malignancies treated by antiVEGF ->
renal biopsies 16 +/- 10 months after beginning of treatment
for renal carcinoma without proteinuria
21 Hypertension
Mean proteinuria = 2.97 g/24h
Mean serum creatinine = 134 µmol/l


Table 4. Expression of podocin, nephrin, synaptopodin, and VEGF (by immunochemistry), number of glomeruli per section and percentage of acute tubular necrosis in renal biopsies from the 22 patients with proteinuria and/or renal failure during adjuvant anti-angiogenic treatment

No. of patient	Number of glomeruli	Podocin	Nephrin	Synaptopodin	VEGF	ATN (%)
1	14	0/+	0	+	0/+	0
2	27	0	++	++	1	0
3	5	0	0	0 /+	NA	>50
4	20	0	0	NA	?NA	0
5	10	0	+	0	NA	0
6	5	+	+	0	+	15
7	10	+	0 /+	+	NA	30
8	7	0	+	+/++	ND	0
9	7	0	+	+	0/+	0
10	13	0	++	0 /+	0/+	20
11	5	0	0	0 /+	0/+	10
12	13	0	0	0	0	30
13	11	0	0	0 /+	0/+	<10
14	13	0	++	++	0	0
15	27	0	++	++	0/+	0
16	10	0	+	+	0/+	40
17	14	0	0 /+	+	0 /+	0
18	22	0	0	0	0 /+	<10
19	12	0	0	+	0	0
20	10	0	0	0	0 /+	<20
21	10	0	0 /+	+	0 /+	0
22	16	0	0 /+	0	0 /+	<10

Score: 0, no expression; 1, mild expression and 2, strong expression. The number of analysed glomerular cross-sections is reported on the second column. The percentage of ATN in renal biopsy sections is reported in the right column. NA, not available.

Nephrin, podocin and synaptopodin were variably down-regulated in all renal biopsies. VEGF was down-regulated in all glomeruli.

Anti VEGF et complément

VEGF synthesized podocytes

Paracrine effects on glomerular endothelial cells

-> Production of CFH by these cells

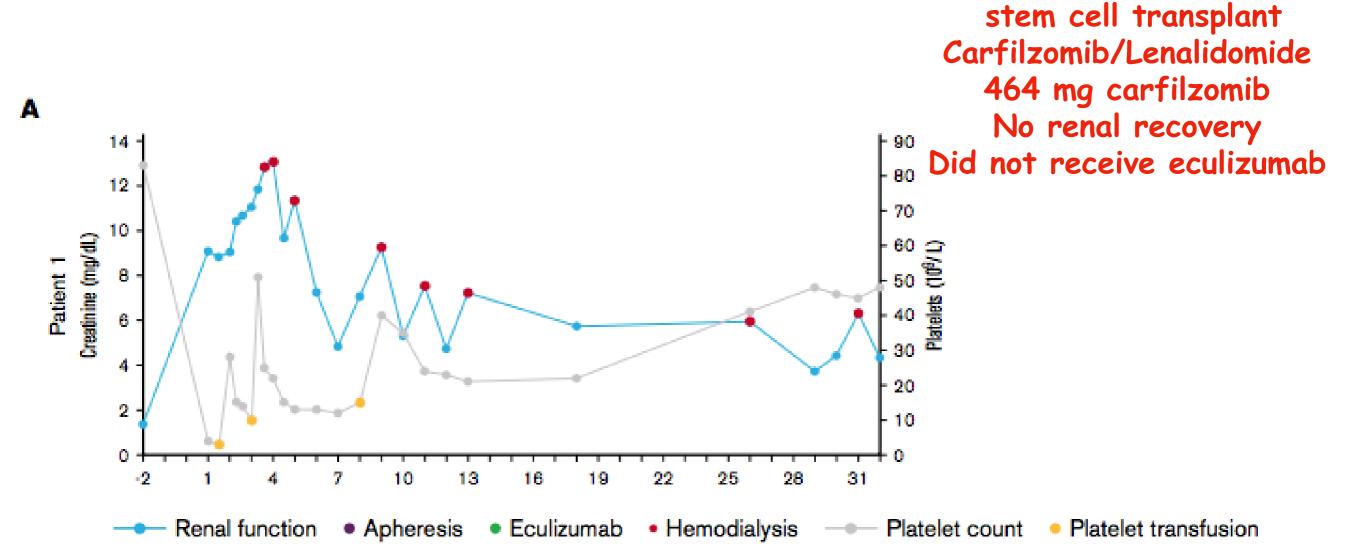
Anti-VEGF -> endothelial cells more vulnerable to complement activation

Proteasome inhibitor associated TMA

TABLE I. Laboratory Values at TMA Diagnosis and Clinical Manifestations.

					Platelet						TMA			
	Age and sex	PI used	Timing ^a	Hgb (g dL ⁻¹)	count, ×109/L	Cr (mg dL ⁻¹)	LDH (U L ⁻¹)	Hapto (mg dL ⁻¹)	ADAMTS13 activity	Dialysis required	on renal biopsy	AST (U L ⁻¹)	GI sx	Neuro sx
1	70 M	Bortezomib	21 d	6.9	66	9.9	631	<14		Υ		50	Υ	N
2	64 M	Bortezomib	9 d	9.2	17	0.8	659	<14		N		118	N	N
3	51 M	Bortezomib	21 d	7.5	119	2.65	218	<2	34%	Y	Y	49	N	N
4	80 M	Carfilzomib	5 d	11.2	11	6.1	1920	<14	100%	Υ		96	N	Υ
5	79 M	Carfilzomib	8 mo	8.4	18	7.29	3481			Y		137	Υ	Υ
6	67 M	Carfilzomib	17 mo	10.3	20	3.12	642			N		43	N	N
7	64 F	Carfilzomib	8 mo	11.9	8	1.1	1848	<10	88%	N		123	Υ	N
8	67 F	Carfilzomib	7 d	7.3	34	8.1	698	<8	79%	Y		36	Υ	N
9	45 M	Carfilzomib	6 mo	4.6	163 ^b	1.75	250	34		N		17	Υ	Υ
10	44 M	Carfilzomib	8 mo	6.7	39	7.28	1220	3		N	Y	58	Υ	N
11	49 M	Carfilzomib	6 d	7.2	18	2.4	1129	<14	82%	N		36	N	N

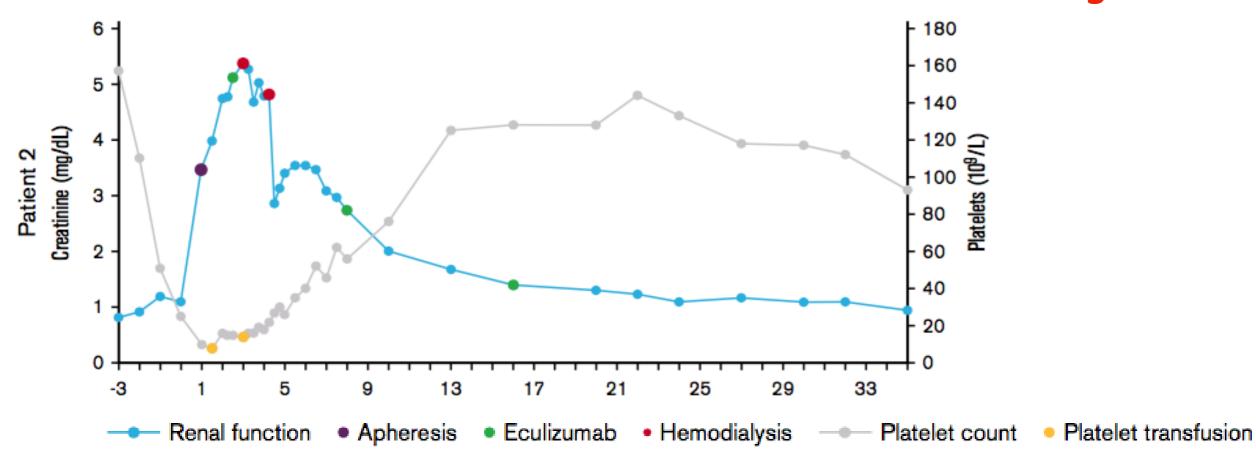
Normal ADAMTS 13 (n = 5, median = 82%)


bortezomib = Velcade
Carfilzomib = Kyprolis

- All patients had a normal C3, Genetic studies -> no mutations (CAP)
 revealed (n = 2)
- Half of the cases occurring within 14 days of drug initiation, and half occurring later in the treatment course (carfilzomib)
- NFkB inhibition -> VEGF pathway inhibition -> microvascular injury to the glomerular capillaries

¹Department of Internal Medicine and ²Department of Hematology/Oncology, University of Rochester, Rochester, NY

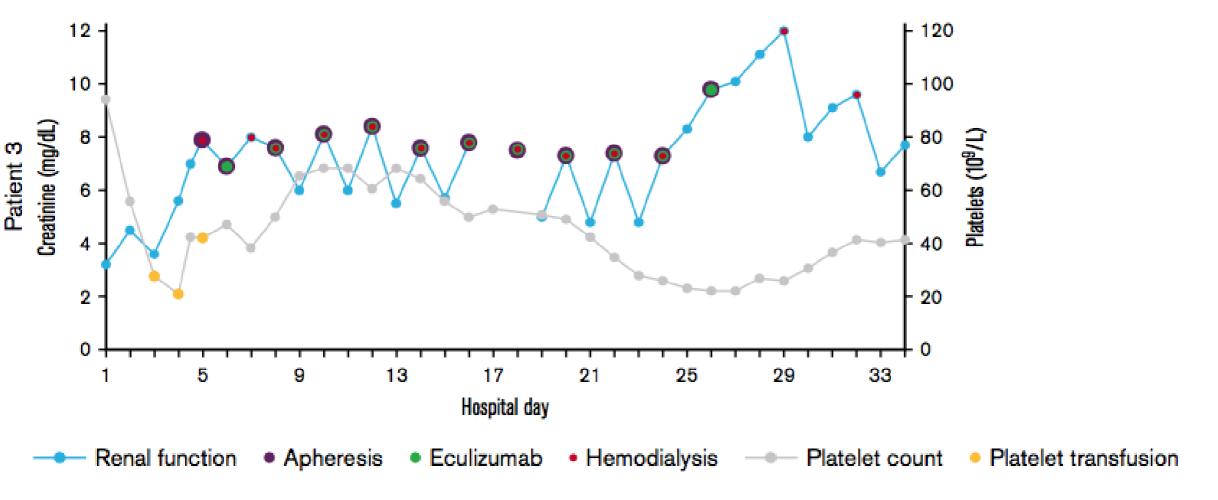
Patient 1


Plasma cell leukemia

Autologous

Andrew Jay Portuguese¹ and Brea Lipe²

Patient 2
Multiple myeloma
Autologous
stem cell transplant
carfilzomib/lenalidomide
1826 mg carfilzomib


¹Department of Internal Medicine and ²Department of Hematology/Oncology, University of Rochester, Rochester, NY

Andrew Jay Portuguese¹ and Brea Lipe²

¹Department of Internal Medicine and ²Department of Hematology/Oncology, University of Rochester, Rochester, NY

Patient 3
Plasma cell leukemia
cyclophosphamide/carfilzomib
329 mg carfilzomib

Andrew Jay Portuguese¹ and Brea Lipe²

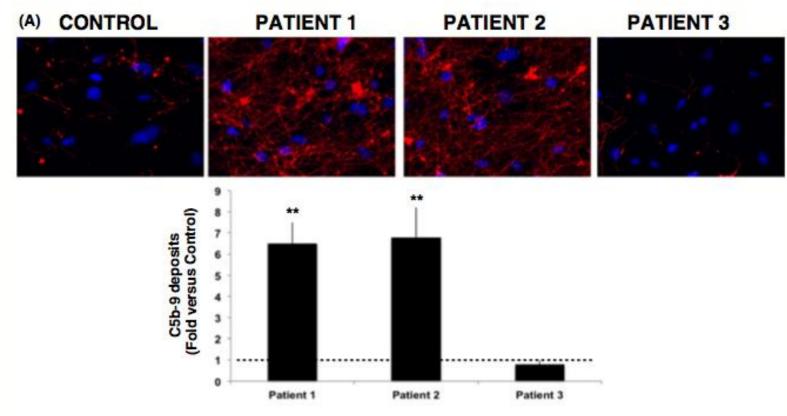
¹Department of Internal Medicine and ²Department of Hematology/Oncology, University of Rochester, Rochester, NY

Patients 1 and 2: were found to harbor heterozygous CFHR3-CFHR1 deletions Functional alternative complement pathway testing: Unremarkable in all 3 patients

A common homozygous deletion encompassing CFHR3 and CFHR1 genes is associated with aHUS

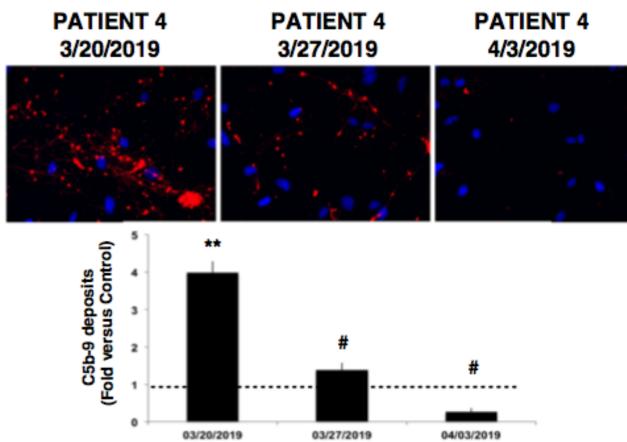
Heterozygous deletion is considered a common benign variant

BUT


Proteasome inhibition in vitro -> decreases CFH expression
-> uncontrolled complement activation on cell and tissue surfaces ->
Increases cytotoxic effect of complement activation

bjh short report

Complement as the enabler of carfilzomib-induced thrombotic microangiopathy


Table I. Carfilzomib-induced thrombotic microangiopathy: patient characteristics.

	Patient 1	Patient 2	Patient 3	Patient 4
Demographics and previous history				
Sex	Female	Female	Male	Male
Age, years	59	75	60	41
Diagnosis (year)	MM	MM	MM	Relapsed solitary
	IgG kappa (2012)	BJ/lambda (2013)	IgA lambda (2010)	plasmacytoma (2017)
Number prior line treatments to CFZ	2	1	9	2
Previous autoSCT	Yes	Yes	Yes	Yes
CFZ-regimen administered	Kd (56 mg/m ²)	KRd (27 mg/m ²)	Kd (20 mg/m ²)	KRd (27 mg/m ²)
TMA associated with CFZ				
Date	September 2017	November 2017	August 2018	March 2019
CFZ cycle/day at presentation	Cycle 3, day 15	Cycle 1, day 15	Cycle 1, day 1	Cycle 6, day 2
TMA signs				
Haemoglobin, g/l [120-170 g/l]	68	69	70	64
Haematocrit, % [36-51%]	21	22	20	20
LDH, U/l [250-450 U/l]	3421	590	1645	2665
Haptoglobin, mg/dl [0·3-1·8 mg/dl]	Undetectable	Undetectable	Undetectable	Undetectable
Reticulocytes, $\times 10^9/l$ [25–90 $\times 10^9/l$]	157	121	94	230
Platelets, $\times 10^9 / l [150-400 \times 10^9 / l]$	8	67	55	5
Creatinine, mg/dl [0·3-1·3 mg/dl]	6.25	2.77	4.77	13.67
Haemodialysis (number of sessions)	Yes (×4)	Yes (×3)	Yes (×3)	No

(B)

Membrane attack complex (C5b9) deposition on endothelial cells in culture exposed to plasma from patients during the acute phase of the disease suggests complement over activation in 3 out of 4 patients

Treatment

- Screening +++ (HTA, Urine dipstick test)
- Treat hypertension (ACEIs, ARBs)...
- Specific treatment:

Possibility of spontaneous recovery 6-9 months

- Stop chemotherapy
- Plasmapheresis
- Steroids or other immunotherapies
- Complement C5 inhibition

CASE REPORT Open Access

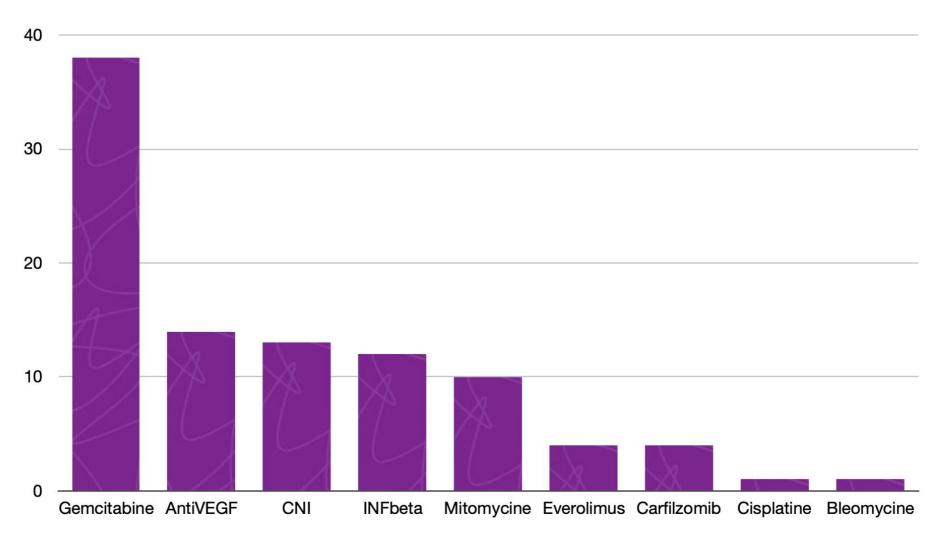
CrossMark

Ipilimumab-induced thrombotic thrombocytopenic purpura (TTP)

Jeanelle King¹, Javier de la Cruz² and Jose Lutzky^{1*}

68 yo woman Stage 3 melanoma pT2N2M0

Ipilimumab 10 mg/kg/3 weeks TTP 19 days after 3rd cycle


Hb 6.8 g/dl, Platelets 7 giga/L, LDH > 7000 UI/L
Presence of schistocytes
Creatinine 246 micromol/L
ADAMTS13 activity < 3%, Anti ADAMTS13 Ab +

Good outcome after ttt with steroids/antiCD20/ plasmapheresis Discontinuation of ipilimumab

Conclusions

- FIRST, Cancer-associated TMA and chemo-associated TMA need to be distinguished on the basis of clinical evaluation
- Drug-induced TMAs -> several mechanisms -> endothelial toxicity, immune-mediated
- Normal ADAMTS 13 (except for ticlopidine), complement of alternative pathway disorders
- Importance of early diagnosis -> Blood pressure monitoring, Proteinuria +++
- No guidelines on the treatment which depends on the incriminated drug class -> Importance of obtaining an opinion from Regional Reference Centers
- The data presented today is biased!
- Publication bias (success), simple cases unreported
- New French Registry for drug-induced TMAs (underestimated)

Registre MAT Médicaments AN 1

Merci à tous!

Toulouse, Bordeaux, Valenciennes, Reims.....

Original Article

Eculizumab in secondary atypical haemolytic uraemic syndrome

29 patients with secondary TMAs

Eculizumab if worsening of renal function and persistence of TMA despite the treatment of the TMA-precipitating trigger

22 patients genetic analysis -> Pathogenic variants in 2 (none in DITMA)

Eculizumab discontinued after a median of 8 weeks

Table 1. Characteristics at the initiation of eculizumab treatment

	Patients $(n = 29)$
Age (years) ^a	51.8 (36.2-59.6)
Gender, no. (%), male	16 (55.2)
Cause of aHUS, no. (%)	
Drug-induced	15 (51.7)
Tacrolimus	14 (93.3)
Everolimus	4 (26.7)
Sirolimus	1 (6.7)
Systemic disease	8 (27.6)
SLE	3 (37.5)
Scleroderma	2 (25)
Vasculitis (EGPA)	2 (25)
Antiphospholipid syndrome	1 (12.5)
Other causes	6 (20.7)
Pregnancy/postpartum	2 (33.3)
Cancer related	2 (33.3)
Acute humoral rejection renal transplant	1 (16.7)
Primary intestinal lymphangiectasia	1 (16.7)

Time from aHUS diagnosis to	13 (7–26)
eculizumab treatment (days)	
Extrarenal manifestation, no. (%)	11 (37.9)
Dialysis before eculizumab, no. (%)	14 (48.3)
Laboratory findings	
SCr (mg/dL) ^a	4 (3.4-5.6)
eGFR (mL/min/1.73 m ²) ^a	13 (7.7–19.0)
LDH (mg/dL) ^a	960 (570-1950)
Haptoglobin (mg/dL) ^a	5 (0-12)
Haemoglobin (g/dL) ^a	8.8 (8.1-9.9)
Platelet count (×1000/μL) ^a	73 (51–113)
Schystocites, no. (%)	28 (96.6)
Follow-up (months) ^a	5.2 (4.2-14.1)

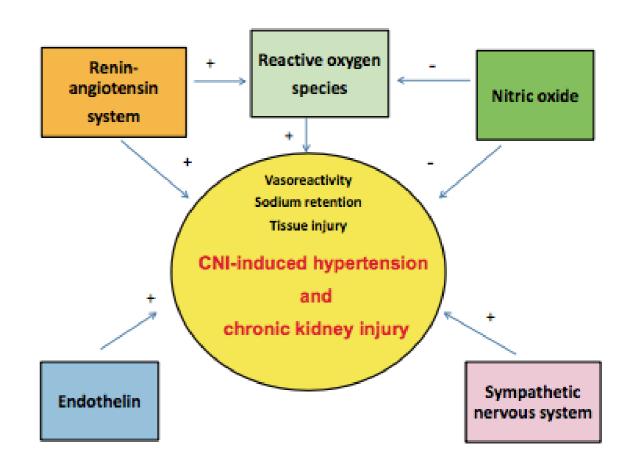
Table 2. Drug-induced aHUS

Patient	Age (years), gender	Offending drug	Treatment before eculizumab	PE no. of sessions
1	43, female	Tacrolimus ^a	DW + PE	3
2	63 female	Tacrolimus ^a	DW + PE	10
3	34, male	Tacrolimus ^a	PE	3
4	18, female	Tacrolimus ^a	DW + PE	2
5	52, female	Tacrolimus ^a	DW	_
6	43, male	Tacrolimus ^a	DW + PE	6
7	36, female	Everolimus ^a	DW + PE	6
8	60, male	Tacrolimus ^b	DW	_
9	67, male	Tacrolimus, everolimus ^b	DW + PE	6
10	59, male	Tacrolimus, everolimus ^b	DW + PE	5
11	65, male	Tacrolimus, everolimus ^b	DW + PE	6
12	51, male	Tacrolimus ^c	DW + PE	2
13	54, female	Tacrolimus, sirolimus ^c	DW + PE	7
14	55, male	Tacrolimus ^d	DW + PE	12
15	42, female	Tacrolimus ^e	DW + PE	3

7 kidney transplants
4 lung transplants
1 liver transplant
1 heart transplant
2 bone marrow transplants

ttt stopped in all patients but 1 (hyperimmunized)

Kidney biopsies in 18 patients
-> TMA in all biopsies
No acute humoral rejection


CNI-induced TMAs

Cyclosporine/tacrolimus

Endothelial dysfunction

- Vasoconstriction
- Release of complementactivation of microparticles
- -> Hypertension/Nephrotoxicity
 - -> Histological lesions of TMA/Few clinical symptoms

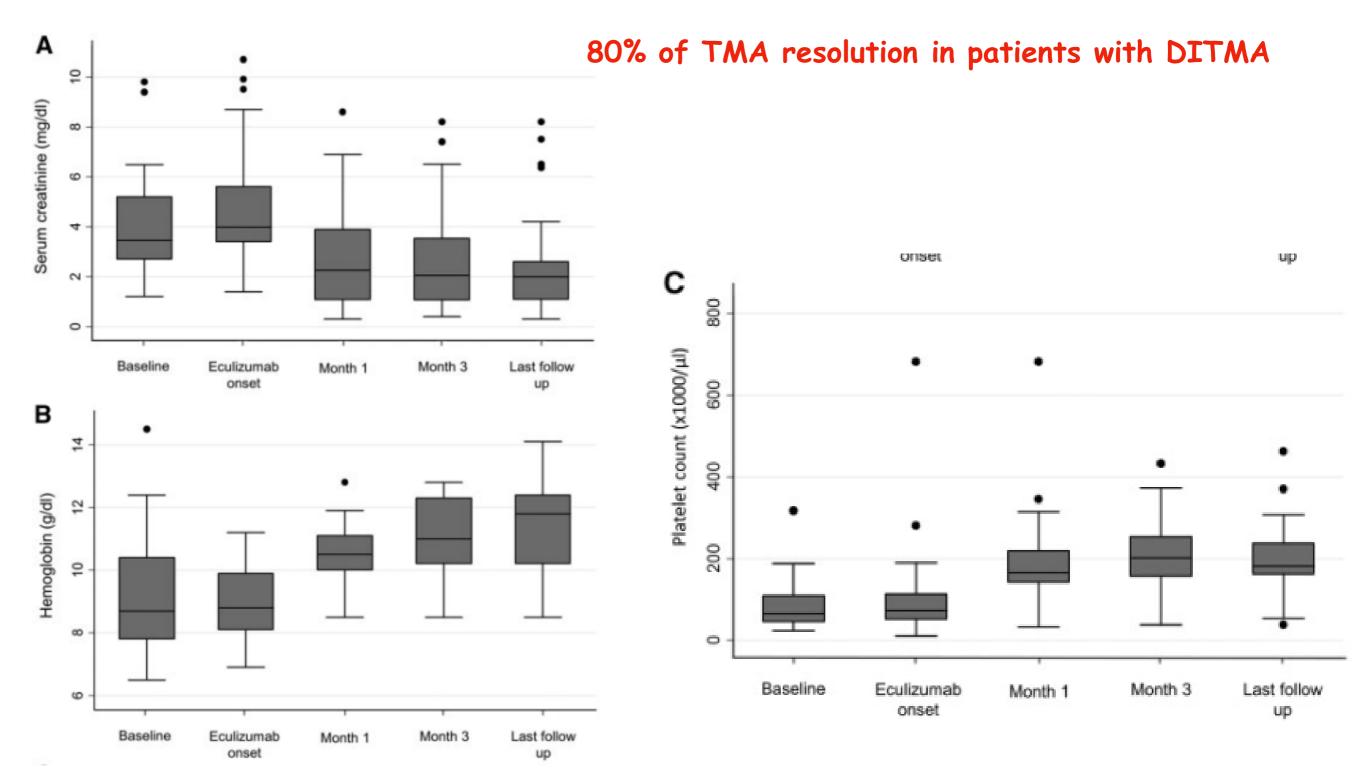

Ttt:
Decrease the dose?
Belatacept?

Fig. 2. The major vasoactive systems and their interactions in the development of CNI-induced endothelial dysfunction, hypertension and kidney damage.

Eculizumab (duration, no. of doses)	Time from aHUS to eculizumab (days)	Highest SCr (mg/dL) HD (Yes/No)	Latest SCr (mg/dL)	Follow-up (months)
2 weeks, 2	4	3.8 No	1.1	16.2
18 weeks, 11	53	3.1 Yes	2.0	5.9
24 weeks, 14	10	9.8 Yes	2.6	6.7
3 weeks, 3	14	2.1 No	2	9.6
8 weeks, 6	26	2.9 No	1.2	8.3
30 weeks, 17	35	3.8 Yes	1.1	16.2
6 weeks, 5	9	4.2 No	2.1	17.5
4 weeks, 4	53	3.4 Yes	2.5	3.4
6 weeks, 5	10	1.8 No	2.0	1.7
10 weeks, 7	7	3.5 No	2.0	4.8
2 weeks, 2	9	3.3 No	2.4	4.5
4 weeks, 4	10	2.4 No	0.6	2.9
3 weeks, 3	7	4.2 Yes	1.2	1.5
18 weeks, 11	27	3.0 No	2.4	14.1
3 weeks, 3	13	1.4 No	0.5	17.0

Rapid resolution of the TMA in 20 (68%) patients, 15 of them showing a > 50% serum creatinine reduction at the last follow-up

Three-year outcomes in kidney transplant recipients switched from calcineurin inhibitor-based regimens to belatacept as a rescue therapy

Study design

Single center retrospective study (01/2012 to 01/2019)

N=115 kidney transplant recipients converted from CNI to belatacept

Conversion:

- eGFR < 30 ml/min/1.73m²
- Chronic histological lesions
- CNI-induced thrombotic microangiopathy (TMA)

36 months after conversion

Cohort

Leading cause : Chronic histological lesions (56.5%)

33% early (< 3 months) Delay : 10 (2-27.5) months

Age: 55.8 ± 15 years eGFR: 31.5 ± 17.5 ml/mn

Preformed DSA: 9.8% TMA: 19.6%

Graphical abstract by @MorelAntoine9

Morel et al., *Transpl. Int.* 2022 doi: 10.3389/ti.2022.10228

36-months outcomes

Patient survival: 88%

Death-censored kidney allograft survival: 92%

eGFR increase : 31.5 ± 17.5 to 36.7 ± 15.7 ml/min/1.73m² (p<0.01)

Acute rejection rate: 10.4%

OI incidence : 5.2 [2.9-7.6] per 100 PY

De novo DSA : **0%** TMA : **0%**

Conclusion

Rescue conversion from CNIs to belatacept is safe and beneficial. It could represent a compromise facing organ shortage.

GRAPHICAL ABSTRACT |