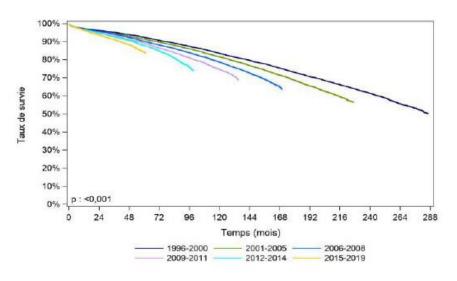

Charlotte Debiais-Deschamps (MD, MPH)

Living vs Deceased donors (ABM)

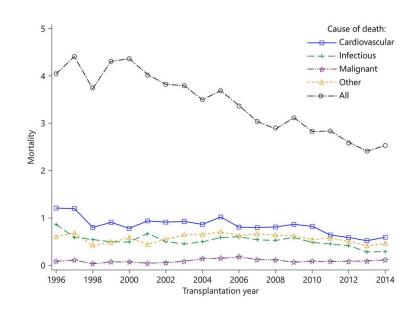
Agence de la biomédecine, period 2007-2019.

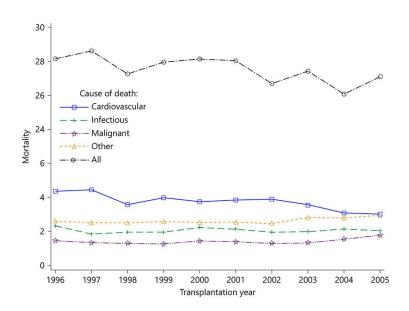
The US experience

Graft and Patient Survival after Kidney Transplantation in the United States.


Kaplan–Meier estimates of patient after transplantation of grafts from living donors (Panel A) and deceased donors (Panels B), with the data grouped in 4-year cohorts from 1996 to 2015. There were gradual improvements in patient and graft survival from the 1996–1999 period to the 2012–2015 period.

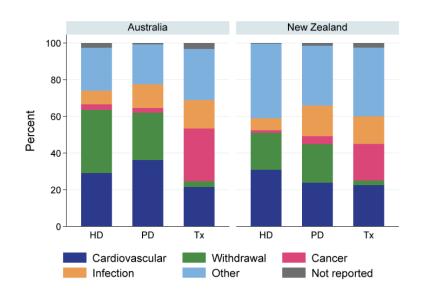
N Engl J Med 2021;385:729-43.


The French experience


Figure R16. Survie du receveur après greffe rénale selon la période

Période de greffe	N	Survie à 1 mols	Survie à 1 an	Survie à 5 ans	Survie à 10 ans	Survie à 15 ans	Médiane de survie (mois)
1996-2000	7753	99,30% [99,0% - 99,4%]	97,20% [96,9% - 97,6%]	92,40% [91,8% - 93,0%]	83,60% [82,7% - 84,4%]	73,00% [72,0% - 74,0%]	NO
nombre de sujets à risque"		7682	7495	7024	6190	5250	
2001-2005	9697	99,10% [98,9% - 99,2%]	97,10% [96,7% - 97,4%]	91,30% [90,7% - 91,9%]	81,50% [80,7% - 82,3%]	68,60% [67,7% - 69,6%]	NO
nombre de sujets à risque"		9596	9378	8708	7567	5185	
2006-2008	7232	99,20% [99,0% - 99,4%]	97,10% [96,7% - 97,5%]	90,20% [89,5% - 90,9%]	78,70% [77,7% - 79,6%]	NO	NO
nombre de sujets à risque"		7167	6997	6432	5334	0	
2009-2011	7403	99,20% [99,0% - 99,4%]	96,80% [96,3% - 97,1%]	89,30% [88,5% - 90,0%]	74,70% [73,6% - 75,7%]	NO	NO
nombre de sujets à risque"		7338	7147	6481	2327	0	
2012-2014	7978	99,10% [98,8% - 99,3%]	96,70% [96,3% - 97,1%]	87,80% [87,1% - 88,5%]	NO	NO	NO
nombre de sujets à risque"		7884	7660	6564	0	0	
2015-2019	15632	99,00% [98,9% - 99,2%]	95,30% [96,0% - 96,6%]	84,00% [83,0% - 85,0%]	NO	NO	NO
nombre de sujets à risque"		15247	13415	1156	0	0	

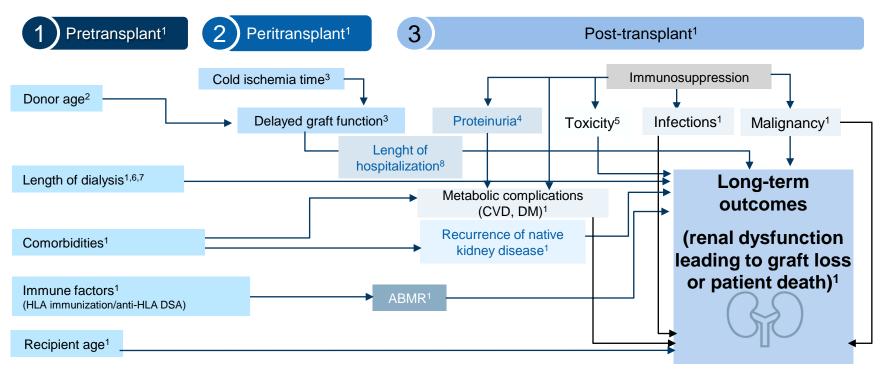
Causes of Death



Trends of 1-year and 10 years all-cause and cause-specific mortality among KTRs in USA1

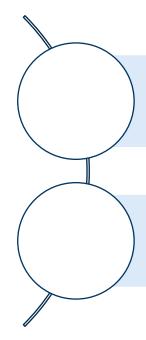
1. Awaan A.A. Am J Nephrol 2018;48:472-481,

Causes of Death



Cause of Death by Modality- Deaths Occuring 2020 in Australia & New Zealand ¹.

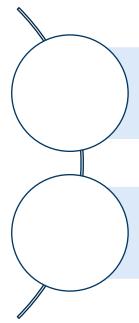
Cause of Death with Function categorised by timing post-transplant ²


Several factors that can affect long-term Outcomes after Kidney transplantation

ABMR, antibody-mediated acute rejection; CVD, cardiovascular disease; DM, diabetes mellitus; DSA, donor-specific antibodies; HLA, human leukocyte antigen; I/R, 7 ischemia reperfusion.

1. Legendre C et al. *Transpl Int.* 2014;27:19-27; 2. Foster BJ et al. *Transplantation* 2013;96: 469-475; 3. Irish WD et al. *Am J Transplant*, 2010; 10: 2279–2286; 4. Halimi JM. *Transplantation* 2013;96:121-130; 5. Nankivell BJ. *Transplantation*. 2004;78(4):557-565. 6. Cosio et al. 7. Meier-Kriesche and Schold, Semin Dial. 2005, 8. Lin SJ et al. Clin Transplant 2006:20: 245–252.

Why to perform mortality modelling?

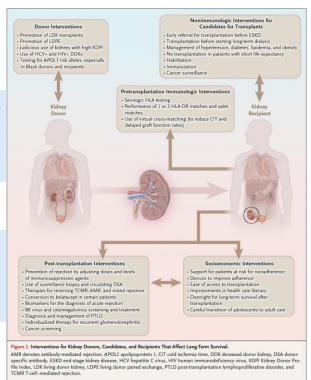

To determine independantly associated factors

- Increase knowledge
- Allow intervention

To **predict** long-term events

- · Inform medical decision and medical care
- Act as surrogate endpoint

Why to perform mortality modelling?



To determine independantly associated factors

- Increase knowledge
- Allow intervention

To **predict** long-term events

- Inform medical decision and medical care
- Act as surrogate endpoint

Hariharan S, Israni AK, Danovitch G. Long-Term Survival after Kidney Transplantation. N Engl J Med. 2021 Aug 19;385(8):729-743.

Kidney transplantation outcomes and regulatory endpoints

How are outcomes measured and what are the endpoints currently used by the regulatory agencies (e.g. FDA, EMA) ?

Currently, one-year outcomes are relevant for regulatory agencies (Acute rejection, Graft loss or Death) to approve a new drug in transplantation

These one-year parameters are only restricted early after transplantation

Defining endpoints for next generation trials in Kidney transplantation

Approved primary end points by health authorities

Current need

Limitations

Designing studies with 5- or 10-year graft and patient survivals

Unrealistic in terms of cost

1-year graft and patient survivals

- Irrelevant today for superiority trials
- Already reached good graft patient survival in transplant population (~95%); further improvement is difficult

Need to define realistic and feasible endpoints for upcoming clinical trials

Need for a tool to predict long-term outcomes

Kidney transplantation currently lacks robust models to predict long-term patients' survival, which represents a major unmet need in clinical care and clinical trials^{1,2}

Current major endpoints include 1-year patient and graft survival and incidence biopsy-proven rejection; however, these do not help assess long-term patients' survival ¹

There is a need for a novel endpoint that better predicts patients' life expendincy³

A prognostic biomarker is needed – that will combine traditional factors and biomarker candidates to represent the complete spectrum of risk-predicting parameters^{1,4,5}

¹² BPAR, biopsy-proven acute rejection.

Stegall M et al. Am J Transplant. 2016;16:1094-1101; 2. Mannon RB et al. Am J Transplant. 2020. doi: 10.1111/AJT.15833; 3. Haas M et al. Am J Transplant, 2018;18(2):293–307; 4. Loupy A, Aubert O et al. B.Med J. 2019;366:14923; 5. Schold JD, Kaplan B. Am J Transplant. 2010; 10: 1163-1166.

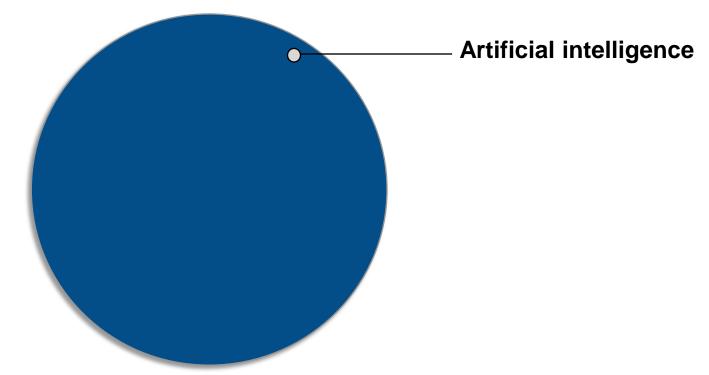
Mortality Prediction

 Many variables are associated with death (univariable models or with few covariables).

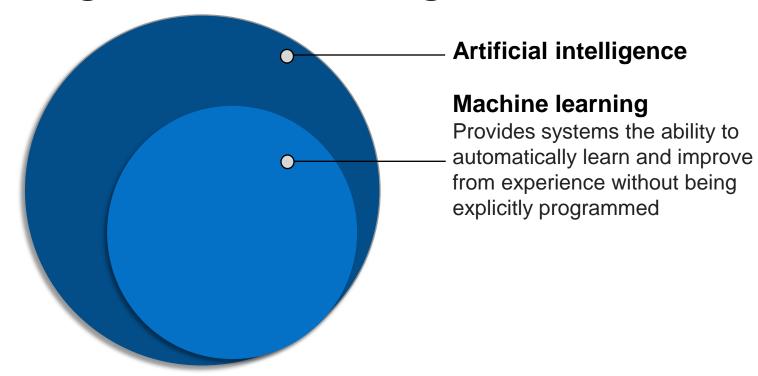
Some mortality score have emerged during the past years with heterogenous performances.

Toom	Bookin Bourst at	Hamandan -t -l	Maniples of all	Lovent et el
Team	Baskin-Bey et al.	Hernandez et al.	Kasiske et al.	Lorent et al.
Year	RRS, 2009	2009	2010	2016
Country	USA	Espagne	USA	France
Computation time	Before transplantation	1 year post-transplant	1 year post-transplant	1 year post-transplant
			(or D0 or D7)	
Predicted event	Death	Death at 3 years	Graft loss or death at 5 Death	
			years	
Recipients variables prior to	Age	Age	Age	Age
transplantation	Diabetes	Diabetes	Cause of CKD	Diabetes
	Dialysis duration	HCV	Ethnicity	Dialysis duration
	Angor/Coronaropathy	Angor/Coronaropathy	Assurance	Cardio-vascular event
Recipients variables up to 1		NODAT	Hospitalisation during first	
year post-transplantation			year	
Biological variables at one		Creatinin	GFR	Creatinin
year		Proteinuria		
Follow-up variables		Tacrolimus or MMF		
Methodology	Cox	Cox	Cox	Cox
Performances	C-stat = 0.78 (for 5Y)	C-stat = 0.74	C-stat = 0.72	AUC = 0.77 (4Y) et 0.78
		IC 95% = 0.70-0.77		(10Y)
Internal validation		Cross-validation	Cross-validation	Cross-validation
External validation	-	No	-	Yes: Suiss cohort

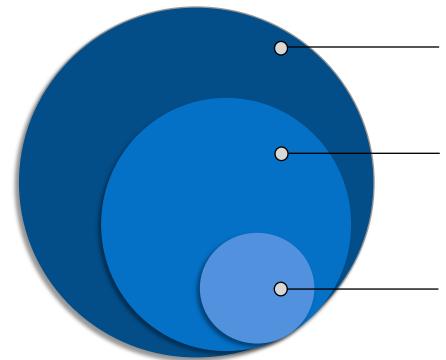
Objective of our study


 The aim of this study is to create a score at one-year post-transplantation that accurately predicts long-term patient mortality

 Using Artificial Intelligence: traditional Cox model or Machine Learning methods.


Artificial intelligence: definition

Artificial intelligence is a science like mathematics or biology. It studies ways to build intelligent programs and machines that can creatively solve problems, which has always been considered a human prerogative

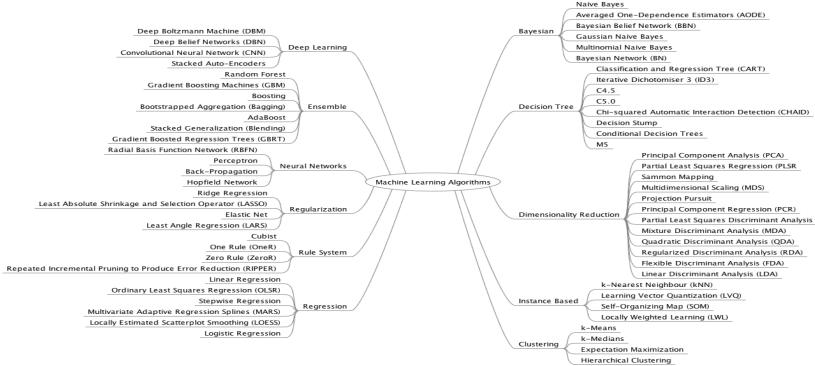

Artificial intelligence, machine learning and deep learning: three different things

Artificial intelligence, machine learning and deep learning: three different things

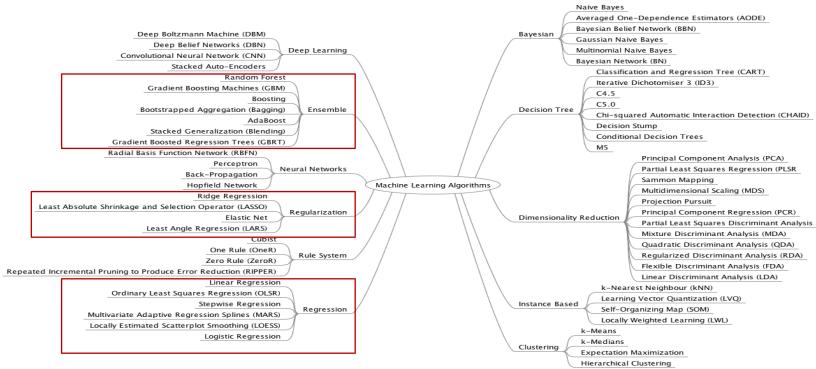
Artificial intelligence, machine learning and deep learning: three different things

Artificial intelligence

Machine learning


Provides systems the ability to automatically learn and improve from experience without being explicitly programmed

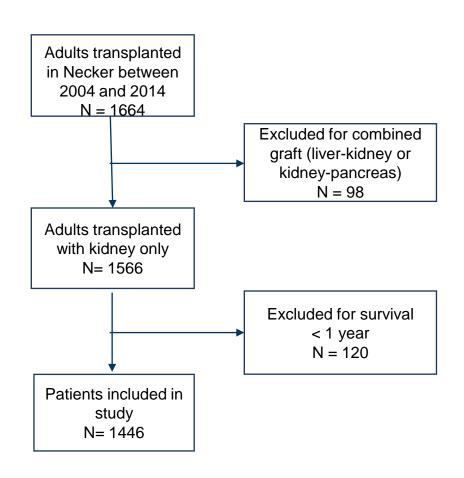
Deep learning


Uses the neural networks to analyze different factors with a structure that is similar to the human neural system

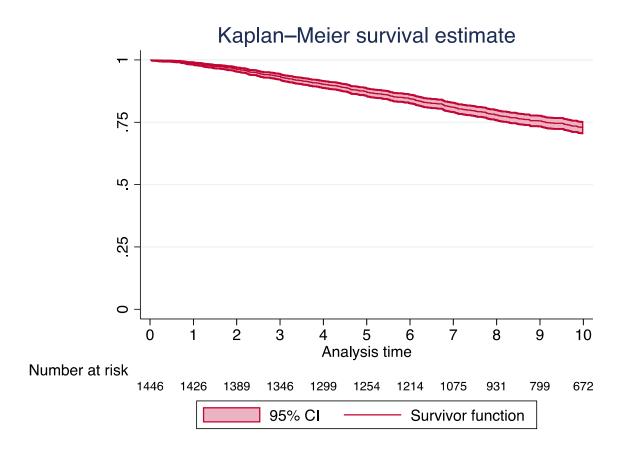
What includes 'machine learning'?

What includes 'machine learning'?

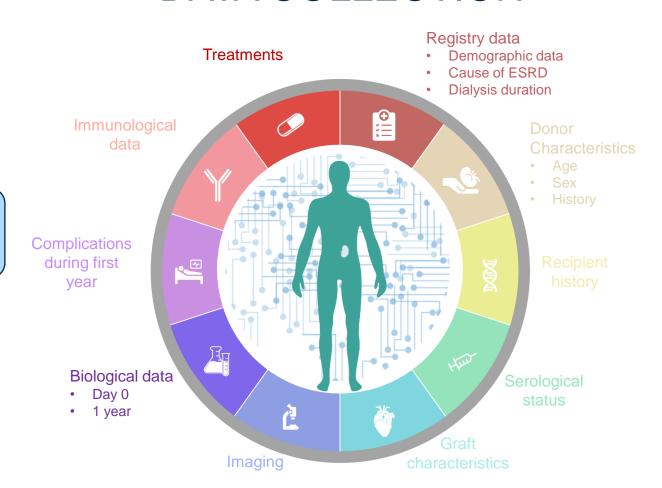
What includes 'machine learning'?



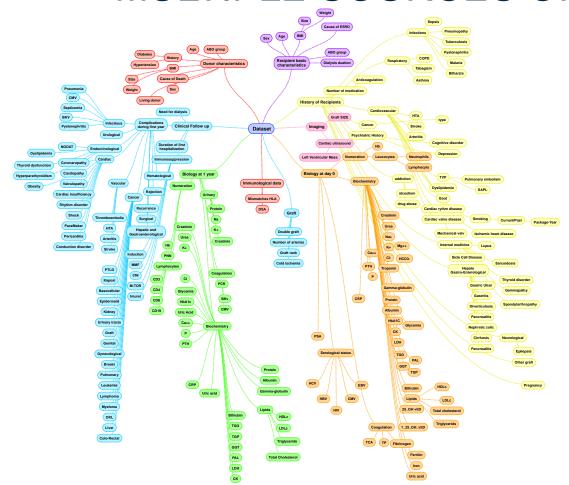
MORTALITY PREDICTION ALGORYTHM


One-year prediction

STUDY DESIGN


- Consecutive kidney transplant recipients at Necker hospital
- Inclusion time: 2004-2014
- Evaluation at one year post-transplant
- 427 deaths during the study period
- Median follow-up: 10.6 years

Kaplan-Meier curve



DATA COLLECTION

> 160 parameters

MULTIPLE SOURCES OF DATA

- Recipient history
- Biology day 0
- Biology 1 year
- Clinical Follow-up
- Donor basic characteristic
- Recipient basic characteristic
- Imaging

Recipients characteristics

Recipient characteristics	n	Cohort
Age, mean (SD), years	1446	49.35 (14.19)
Gender male, No. (%)	1446	878 (60.72)
BMI, mean, kg/m2	1446	25.02 (4.52)
ESRD causes: Glomerulonephritis, No. (%) PKD, No. (%) Diabetes, No. (%) Hypertension, No. (%) NIC Other, No. (%) Unknown, No. (%)	1446	407 (28.15) 144 (9.96) 117 (8.91) 59 (4.08) 222 (15.35) 173 (11.96) 309 (21.37)
Dialysis, No. (%)	1446	1164 (80.50)
Time since onset of dialysis, median (IQR)	1446	3.18 (0.82 - 6.25)
Cardiac echography Left Ventricular Mass, mean (SD)	1446	128.35 (29.24)
Kidney transplant imaging Kidney size, mean (SD), cm	1446	11.05 (0.82)

Donors characteristics

Donors characteristics	n	Cohort	
Age, mean (SD), years	1446	53.47 (16.86)	
Gender male, No. (%)	1446	758 (52.42)	
BMI, mean, kg/m2	1446	25.42 (4.92)	
Hypertension, No %	1446	404 (27.94)	
Diabetes, No %	1446	101 (6.98)	
Living Donor, No. (%)	1446	337 (23.31)	
Vascular Death, No %	1109	639 (57.62)	
Last creatinine ,mean (SD), μmol/L	1446	88.71 (52.20)	

Transplant characteristics

Transplant characteristics	N	Cohorte
Graft rank	1446	
1 2		1177 (81.40) 211 (14.59)
3		51 (3.53)
4		5 (0.35)
5		2 (0.14)
Dual kidney graft, No. (%)	1446	132 (9.13)
Number of renal arteries >1, No. (%)	1446	326 (22.54)
DSA, No. (%)	1446	315 (21.78)
HLA A/B/DR mismatchs, mean (SD), number	1446	3.61(0.04)
Duration of first hospitalization, mean (SD), days	1446	19.47 (11.16)
Dialysis après transplantation, No.(%)	1446	339 (23.44)
Follow-up (years), median (IIQ)	1446	10.59 (7.94 – 13.71)
Death events, No. (%)	1446	427 (29.53)
Graft loss, No. (%)	1446	277 (19.16)

Univariable Analysis

- Age
- BMI
 - CMV
 - VHC
- Hypertension
- MACCE
- Dyslipidemia
- Diabetes
- Cardiac rhythm disorder
- Valvulopathy
- COPD
- Smoking
- Asthma
- Tuberculosis
- Gastic Ulcer

- Diverticulosis
- Cancer
- Monoclonal Gammapathy
- Psychiatric disorder
- Number of medicationDialysis history
- Immunosuppression
- Left ventricular mass
- Kidney transplanted size
- Mismatches HLA, DSA
 Cold ischemia time, dur
- Cold ischemia time, dual kidney transplantation,
- Living donor,
- Donor : Sex, BMI, Hypertension, Diabetes

- Complications:
 - Recurrency,
 - Vascular, Cardiac, infection, surgical,
 - anemia, urological, cancer, NODAT
 - Biology:
 GFR, RPCU
 - GFR, RPCU
 - Albumin, Na, Cl, K, Uric acid, LDH,PTH, GGT, CK,

triglycerids, CRP,

- HbA1C,Hb, Neutrophils,
 - Lymphocytes

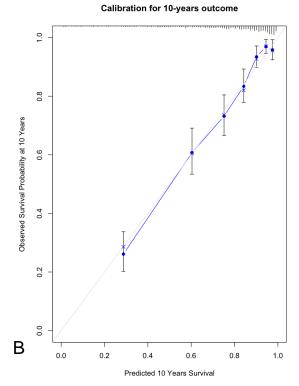
VARIABLES INCLUDED IN THE FINAL MULTIVARIABLE COX MODEL

Recipient's History

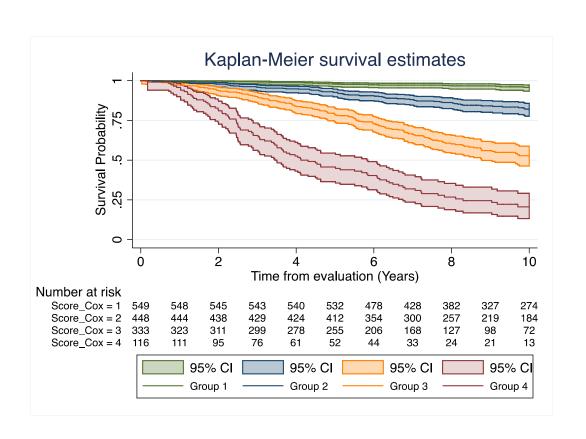
- Age (HR=1.07, CI: 1.06-1.08)
- Major CV events. (HR=1.71, CI:1.35-2.16)
- Psychiatric history (HR=2.62, CI:1.75-3.92)
- HCV status (HR=1.59, CI:1.11-2.29)
- Left Ventricular Mass (HR = 1.01, CI:1.001-1.008)
- DSA before transplantation (HR = 1.32, CI: 1.03-1.71)

Complications during the First Year

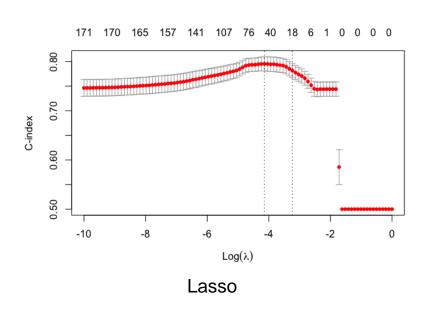

- Cardiac complication (HR=1.38, CI:1.11-1.72)
- Vascular complication (HR=1.29, CI: 1.03-1.61)
- Cancer (HR=1.94, CI: 1.32-2.84)
- Anemia. (HR=1.28, CI :1.03-1.61)

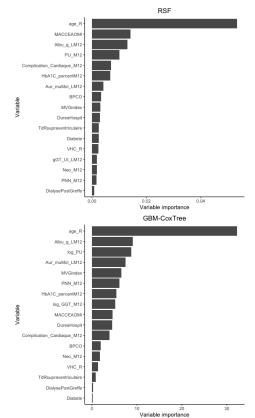


Siology M12

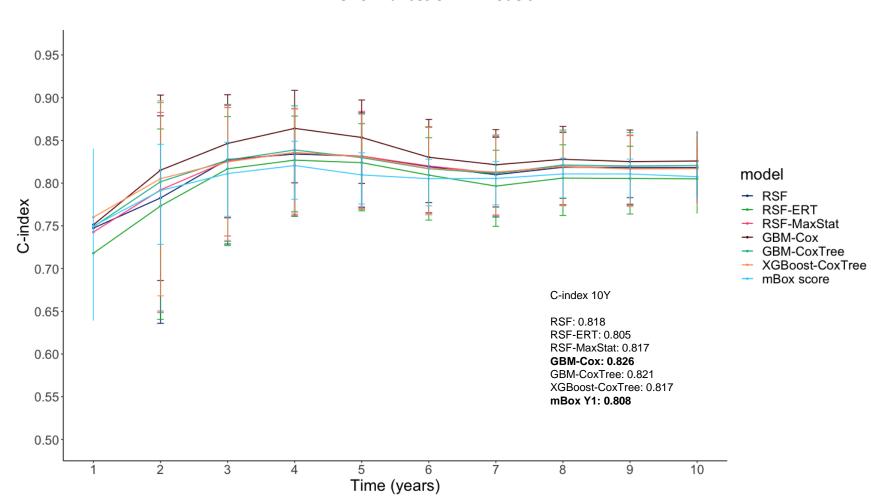

- UPCR (HR=1.22, CI:1.11-1.35)
- HbA1C (HR=1.13, CI: 1.03-1.25)
- Uric acid (HR=1.01, CI: 1.01-1.01)
- Gamma-gt (HR=1.18, CI:1.05-1.34)
- Lymphocytes (HR=0.85, CI:0.73-0.98)
- Neutrophils (HR=1.12, CI: 1.06-1.18)

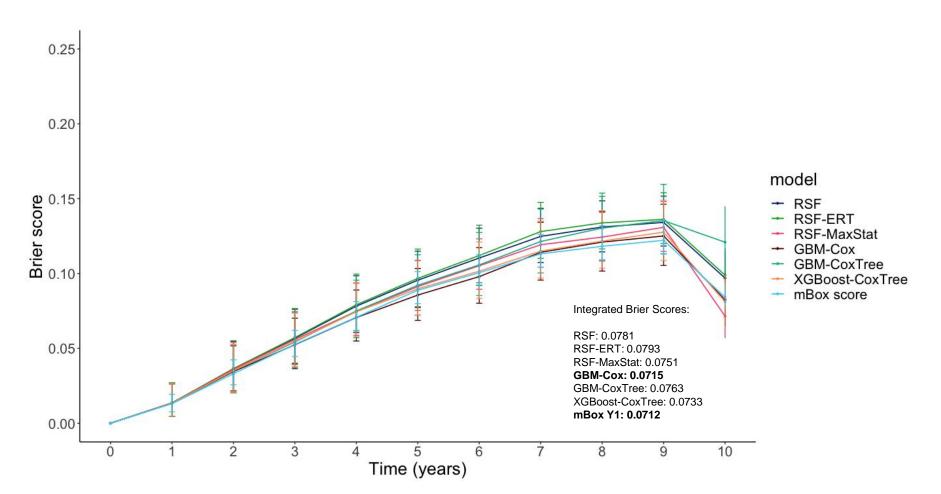
MODEL PERFORMANCES DISCRIMINATION & CALIBRATION





DISTINCT SURVIVAL GROUPS


Other models for variables' selection and mortality prediction



Cox	Lasso	ElasticNet	RSF	Gradient Boosting
Age of recipient	Age of recipient	Age of recipient	Age of recipient	Age of recipient
Major CV events	Major CV events	Major CV events	Major CV events	Major CV events
Psychiatric history	Psychiatric history	-	Ventricular Mass	Ventricular Mass
HCV status	HCV status	-	HCV status	HCV status
-	Diabetes	Diabetes	Diabetes	Diabetes
DSA before transplantation	Cardiac rythm disorder	-	Cardiac rythm disorder	Cardiac rythm disorder
Left Ventricular Mass	COPD	-	COPD	COPD
Cardiac complication	Cardiac complication	Cardiac complication	Cardiac complication	Cardiac complication
Vascular complication	Vascular complication	Duration of first hospitalisation	Duration of first hospitalisation	Duration of first hospitalisation
Cancer	Cancer	-	-	Cancer
Anemia	Need for dialysis	-	-	Need for dialysis
UPCR	UPCR	UPCR	UPCR	UPCR
HbA1C	HbA1C	HbA1C	HbA1C	HbA1C
-	Albumin	Albumin	Albumin	Albumin
Uric acid	Uric acid	Uric acid	Uric acid	Uric acid
GGT	GGT	-	-	GGT
36 Neutrophils	Neutrophils	-	-	Neutrophils
Lymphocytes	CRP	-	-	-

Performances of ML models

Brier Score

VARIABLES INCLUDED IN THE FINAL MULTIVARIABLE COX MODEL

Recipient's History

- Age (HR=1.07, CI: 1.06-1.08)
- Major CV events. (HR=1.71, CI:1.35-2.16)
- Psychiatric history (HR=2.62, CI:1.75-3.92)
- HCV status (HR=1.59, CI:1.11-2.29)
- Left Ventricular Mass (HR = 1.01, CI:1.001-1.008)
- DSA before transplantation (HR = 1.32, CI: 1.03-1.71)

Complications during the First Year

- Cardiac complication (HR=1.38, CI:1.11-1.72)
- Vascular complication (HR=1.29, CI: 1.03-1.61)
- Cancer (HR=1.94, CI: 1.32-2.84)
- Anemia. (HR=1.28, CI :1.03-1.61)

Siology M12

- UPCR (HR=1.22, CI:1.11-1.35)
- HbA1C (HR=1.13, CI: 1.03-1.25)
- Uric acid (HR=1.01, CI: 1.01-1.01)
- Gamma-gt (HR=1.18, CI:1.05-1.34)
- Lymphocytes (HR=0.85, CI:0.73-0.98)
- Neutrophils (HR=1.12, CI: 1.06-1.18)

VARIABLES INCLUDED IN THE FINAL MULTIVARIABLE COX MODEL

Recipient's History

- Age (HR=1.07, CI: 1.06-1.08)
- Major CV events. (HR=1.71, CI:1.35-2.16)
- Psychiatric history (HR=2.62, CI:1.75-3.92)
- HCV status (HR=1.59, CI:1.11-2.29)
- Left Ventricular Mass (HR = 1.01, CI:1.001-1.008)
- DSA before transplantation (HR = 1.32, CI: 1.03-1.71)

Complications during the First Year

- Cardiac complication (HR=1.38, CI:1.11-1.72)
- Vascular complication (HR=1.29, CI: 1.03-1.61)
- Cancer (HR=1.94, CI: 1.32-2.84)
- Anemia. (HR=1.28, CI :1.03-1.61)

3iology M12

- UPCR (HR=1.22, CI:1.11-1.35)
- HbA1C (HR=1.13, CI: 1.03-1.25)
- Uric acid (HR=1.01, CI: 1.01-1.01)
- Gamma-gt (HR=1.18, CI:1.05-1.34)
- Lymphocytes (HR=0.85, CI:0.73-0.98)
- Neutrophils (HR=1.12, CI: 1.06-1.18)

Application of mortality algorithm: patient care

Improve knowledge of mortality predictors

Intervention when possible

HbA1C

Dialysis duration

HCV

Immunosuppression

Medical decision-making

Stratify patients into clinically meaningful risk groups

Patient monitoring

Personnalized follow-up

Application of mortality algorithm: clinical trials

Emerging surrogate end point

Reliable prediction of the long-term patients survival up to 10 years

A clinical decision support system

Help to design clinical trials
Facilitates faster drug development

THANK YOU!