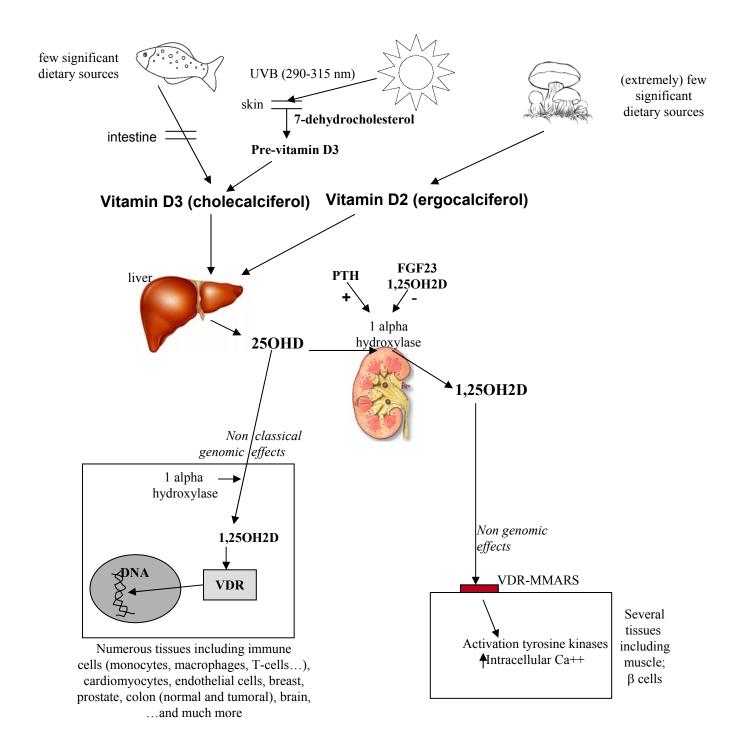

« nutritional » vitamin D Is it relevant in CKD?

Jean-Claude Souberbielle Hôpital Necker-Enfants malades

Vitamin D is not a vitamin *stricto sensu* (main source is not from diet). To become fully active, vitamin D must transformed in the liver to form 25 OH vitamin D, and again in the kidney to form 1,25 dihydroxy vitamin D (also called calcitriol). Calcitriol is released into the bloodstream and binds to its receptor, the VDR, in target tissues distant from the kidney to exert genomic effects <u>Calcitriol can thus be considered as a true hormone</u> <u>250HD serum level represents vitamin D status (consensus)</u>



Association between treatment with calcitriol or analogs, and mortality in CKD

Teng M, et al. N Engl J Med 2003; 349: 446-456.
Shoji T, et al. Nephrol Dial Transplant 2004; 19: 1791-84.
Teng M, et al. J Am Soc Nephrol 2005; 16:1115-1125.
Kalantar-Zadeh K, et al.. Kidney Int 2006; 70: 771-780.
Tentori F, et al. Kidney Int 2006; 70: 1858-1865.
Shoben AB, et al.. J Am Soc Nephrol 2008; 19: 1613-1619.
Kovesdy CP, et al. Kidney Int 2008; 73: 1355-1363.
Naves-Diaz M, et al. Kidney Int 2008; 74: 1070-1078.

« Suggestion » of the KDIGO

3.1.3 In patients with CKD stages 3-5D, we suggest that 25OHD levels might be measured, and repeating testing determined by baseline values and therapeutic intervention (2C).
We suggest that vitamin D deficiency and insufficiency be corrected using treatment strategies recommended for the general population (2C).

Is 250HD able to bind VDR?

 « classical » effects
 -<u>stimulates absorption of calcium</u> and phosphorus by the gut

 direct effects on bone
 effects on kidney
 control of PTH secretion

Favours bone mineralisation

700-800UI /day (+calcium)/ reduce RR of « non vertebral » fractures in the elderly

Importance of « genetic » : SNP of VDR, CYP27B1, CYP24, DBP.... « non classical » effects Muscle 700-800UI /J (+calcium) reduce RR of falls in the elderly

Immune System

-stimulation of « innate » immunity
 -inhibition of « adaptative » immunity
 (favours Th2 and TReg versus Th1, Th17)

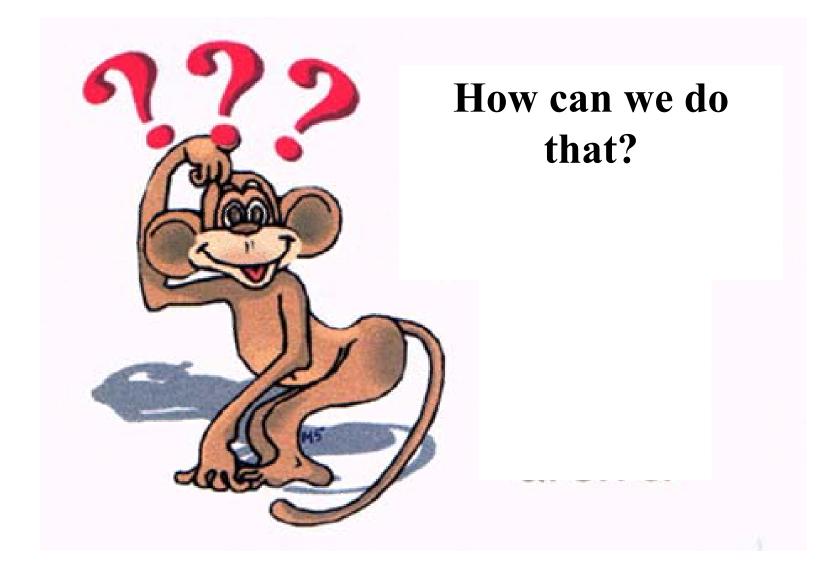
Vasculature

-direct effects

-indirect effects (insulin, inflammation, calcifications, PTH, blood pressure...)

Cancers

Other


(cognition (?) ; renoprotection ; Preeclampsia;...all-cause mortality) What is the « level of evidence »? (Evidence-based Medicine)

- « ecologic » studies - « observation » studies (retrospective, prospective...) **Importance of statistic « adjustments » for confounders. Observational nature prevents conclusion on causality !!** - « exprimental » studies Animal models, cell culture... May explain mechanisms of action, but (often) use of supra-physiologic doses (application of results to human being?) - « intervention » studies (RCTs) (main or secondary endpoints...)

Meta-analyses

"The panel on calcium and related nutrients quickly reached consensus that serum 25OHD was the correct functional indicator of vitamin D status....
Hence, on this point at least, there is consensus(notably, that was not the case as recently as 5-10 years ago)." Heaney R. *Editorial*Vitamin D : how much do we need, and how much is too much. Osteoporosis Int (2000) 11 : 553-555

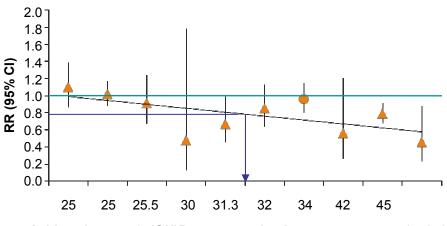
"It may be more appropriate to use health-based than population-based reference values for serum 25OHD i.e., reference limits based on avoidance of adverse health outcomes for the skeleton" P Lips Endocrine Reviews (2001) 22 : 477-501.

-25OHD level above which there is no clinical/radiological/biological signs of rickets/osteomalacia (15-25 nmoL/L ?)

-25OHD level above which there is no histological signs of mineralization defect (75 nmol/L Priemel et al JBMR 2010; 25: 305-12 - von Domarus et al Clin Orthop Relat Res 2011 - see also Need et al JBMR 2007; 22: 757-61)

-relationship between PTH/25OHD :

25OHD threshold below which PTH may increase (many studies 40 to 110nmol/L)


-basal 25OHD levels below which PTH decreases after vitamin D supplementation Malabanan Lancet 1998 (50 nmol/L); Okazaki JBMM 2011 (70 nmol/L)

-Minimal 25OHD concentration for optimal effect of bisphosphonates 82 nmol/L : Carmel ES et al Osteoporos Int online 12 Jan 2012

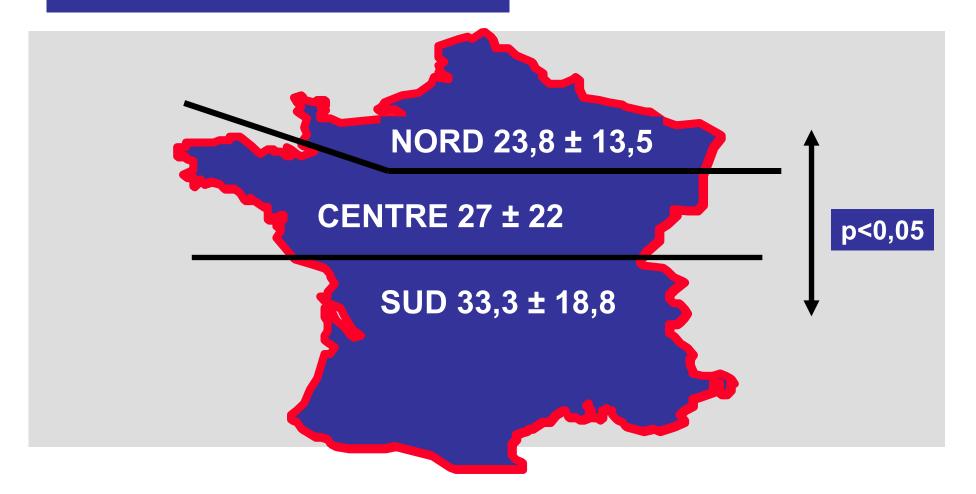
-intestinal absorption of calcium = f([250HD]
80 nmol/L Heaney J Am Coll Nutr 2003 (but...controversial)

Variation of fracture prevention by dose and achieved 25(OH)D

Pooled relative risk (RR):
 0.86 (95% CI, 0.77-0.96) for non-vertebral fractures

Achieved serum 25(OH)D concentration in treatment group (ng/mL)

Anti-fracture efficacy (non-vertebral) increased significantly with higher received dose and higher achieved 25(OH)D level

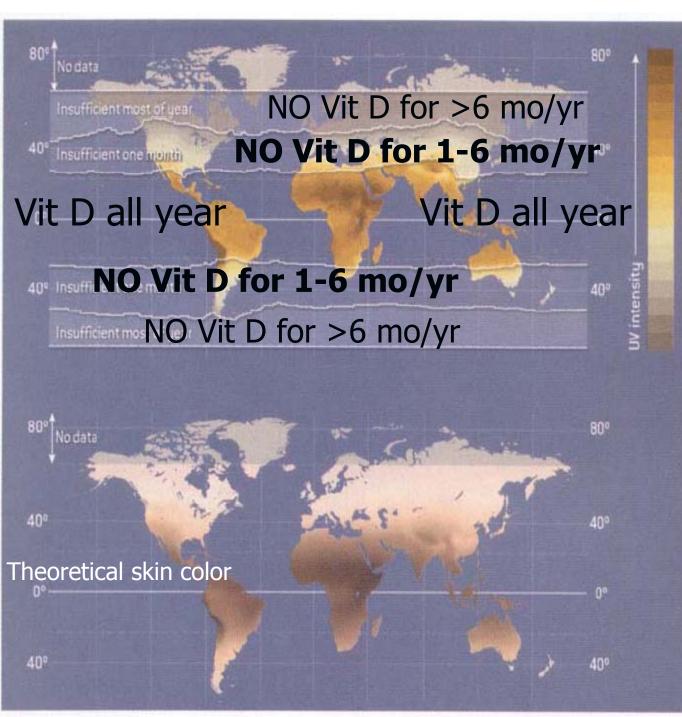

Bischoff-Ferrari HA. Arch Intern Med 2009;169:551-61.

For most experts 25OHD <20 ng/mL(that is <50 nmol/L) = vitamin D deficiency

25OHD 20-<30 ng/mL (that is 50-<75 nmol/L) = vitamin D insufficiency These thresholds are based on bone, phospho-calcic and muscle (falls) effects of vitamin D Holick M et al J Clin Endocrinol Metab 2011

This is not an absolute consensus : some (IOM) consider that 20 ng/mL (50 nmol/L) is largely sufficient while others argue for 40 ng/mL (100 nmol/L) at least . Whatever the threshold (20, 30 or 40 ng/mL), vitamin D insufficiency is very frequent

Vitamin D insufficiency Osteoporotic women 65 yrs old



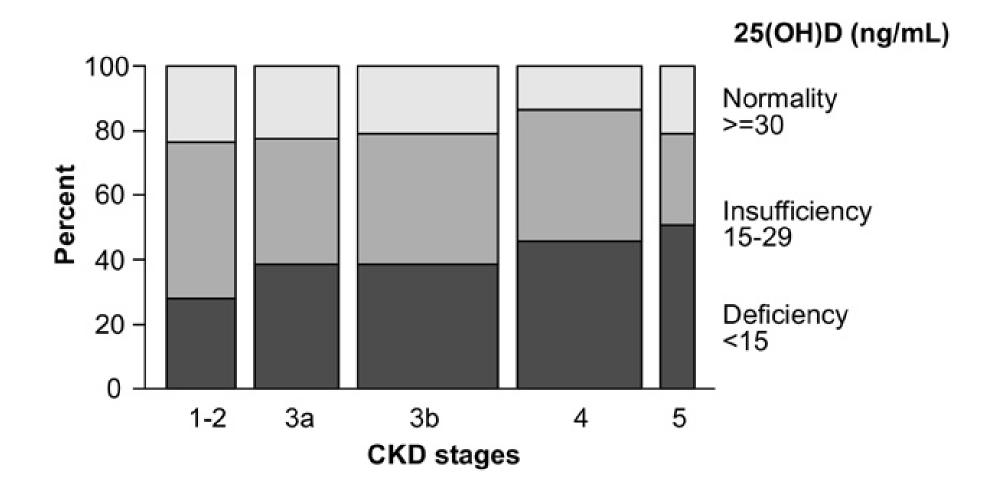
Fardellone P Am J Clin Nutr 1998

Number of Months that UVB from sunshine cannot produce vitamin D₃ in skin

Adapt according to : -age -skin colour and/or use of sunscreen - altitude -covering clothes

sequestration of vitamin D in fat

Luxwolda M et al Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/L. British Journal of Nutrition 2012; in press

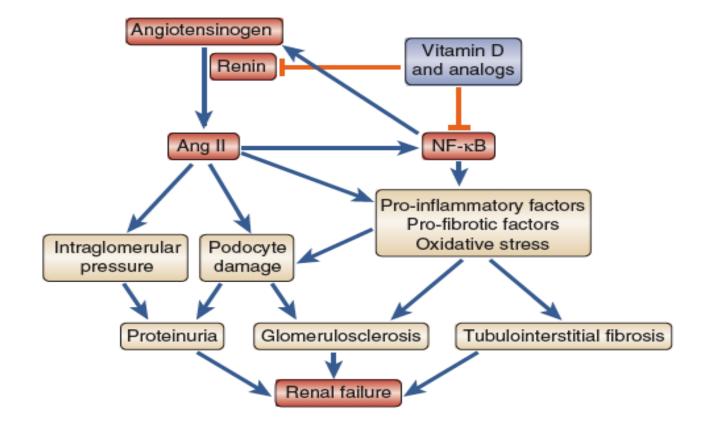

Maasai Mean 25OHD : 119 nmol/L (range 58-167)

Skin type VI; moderate degree of clothing; spend the major part of the day outdoor, but avoid direct exposure to sunlight when possible.

Hadzabe – Mean 25OHD : 109 nmol/L (range 71-171)

Could these definitions/thresholds be applied to patients with CKD ?

Ureña-Torres P et al. Association of kidney function, vitamin D deficiency, and circulating markers of mineral and bone disorders in CKD Am J Kidney Dis 2011 Cohorte Nephrotest : 932 patients analysés


	25(OH)D (ng/mL)				
%	All	≥ 30	15-29	<15	p-value
Hypocalcemia (ionized calcium <2.2 mEq/L)	3.0	1.1	1.9	5.1	0.004
High BAP (>25 ng/mL)	6.3	3.6	5.3	8.7	0.02
Hyperphosphatemia (>4.3 mg/dL)	8.5	7.1	7.2	10.4	0.1
High CTX (>1000 pg/mL)	22.0	17.0	19.1	28.0	0.01
Low 1,25(OH) ₂ D (<16.7 pg/ml)	25.1	14.3	22.4	33.2	< 0.001
Hyperparathyroidism (PTH≥60 pg/mL)	53.9	36.4	47.5	68.7	< 0.001

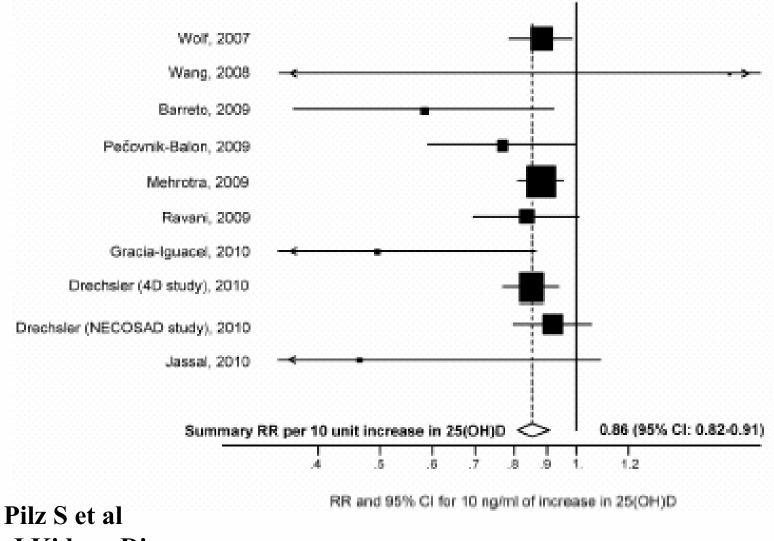
% de patients ayant une anomalie des paramètres « phospho-calciques/osseux » en fonction du statut vitaminique D

> Ureña-Torres P et al. Association of kidney function, vitamin D deficiency, and circulating markers of mineral and bone disorders in CKD Am J Kidney Dis 2011

1-hydroxylated vitamin D and renoprotection

- **Experimental data** (*Review by Li YC, Renoprotective effects of vitamin D analogs, KI, 2010*)
- Inhibition of RA system, NF-Kappa B and TGF- β by calcitriol
- Animal models of CKD : Calcitriol (and analogs) decreases tubulo-interstitial fibrosis and glomerular sclérosis, proteinuria, production of extra cellular matrix
- These effects seem independant of PTH and partially dependant of RA inhibition

Kim MJ et al


Oral cholecalciferol decreases albuminuria and urinary TGFβ1 in patients with type 2 diabetic nephropathy on established renin-angiotensin-aldosterone system inhibition. Kidney International 2011; 80: 851-860.

	Baseline	Month 2	Month 4
25OHD (ng/mL)	15.6 +/- 7.0	41.2 +/-11.4*	39.7 +/-12.8*
1,25OH2D (pg/mL)	24.2 +/- 14.4	51.0 +/- 16.0*	42.8 +/- 23.8*
uAlb/Creat (mg/mmol)	16.4 (95%CI : 9.7-27.4)	12.2 (95%CI : 7.1-20.7)*	12.0 (95%CI : 7.0-20.8)*
uTGF β1/Creat (ng/mmol)	26.5 (95%CI : 20.3-34.4)	15.5 (95%CI : 10.7-22.4)*	9.5 (95%CI : 6.0-14.8)*

de Boer IH et al.

Serum 25-hydroxyvitamin D and change in estimated glomerular filtration rate. Clin J Am Soc Nephrol 2011; 6: 2141-2149

« 1705 older adults with predominantly normal baseline kidney function participating in the Cardiovascular Health Study...
Each 10 ng/mL lower 25OHD was associated with 25% greater risk (CI : 5%-49%, p=0.01) of rapid GFR loss
(>12 mL/mn/1.73 m² over 4 years), adjusting for potential confounders. Compared with 25OHD>30 ng/mL, 25OHD concentrations<15 ng/mL were associated with 68%
(95%CI :1-177%) greater adjusted risk of rapid GFR loss... »

Dose response relative risk estimates for mortality in CKD patients

Pilz S et al Am J Kidney Dis 2011; 58: 374-382

210 -200-Phosphatemia and calcemia 190-105.8 +/-27 nM 180stable 92% >75 nM 170-160-150-31+/-11 nM 140-0% >75 nM 25(OH) D nmol/L 130. 120 110 100. 90 80 70-60-50-40 30 20 10. n 250H-3 25OH-0 250H+1 250H+3 250H+9 250H+15 **PTH b**AP CTX 1,25D 107 HD (66.4 +/-15 ans) **M0:** 294 ng/L 21ng/L 14 pM 2.5µg/L 100 000 UI vitamin D3/month **M15**: 190* 17.1* 2.07* 45 pM* during 15 months *:p<0.05

Jean G et al. Nephrol Dial transplant 2009; 24: 3799-3805

Matias JM et al. Cholecalciferol supplementation in hemodialysis patients : Effects on mineral metabolism, inflammation, and cardiac dimension parameters. Clin J Am Soc Nephrol 2010; 5: 905-911.

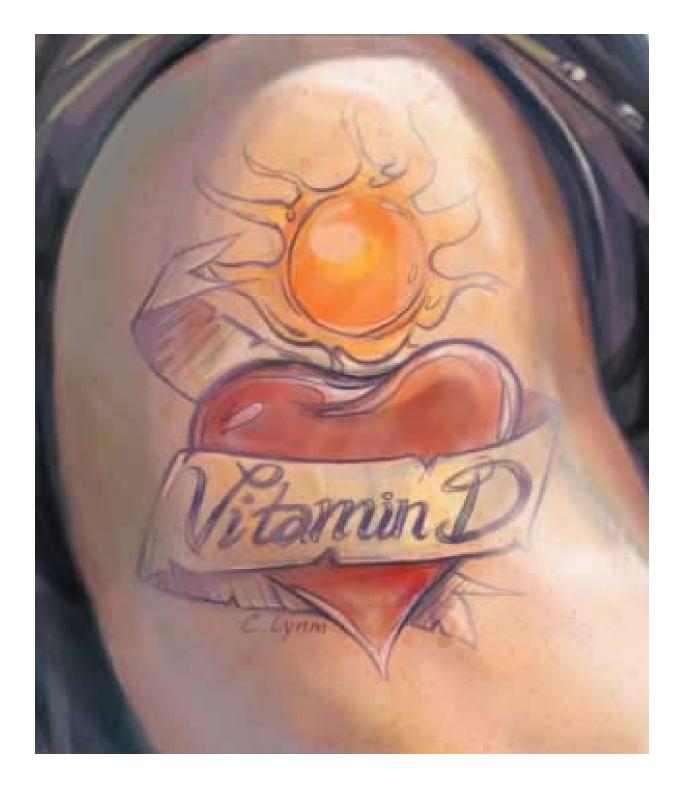
158 HD (62.8 +/-14.8 ans) 6 months: 50 000 UI D3/week if 25OHD<15 ng/mL 10 000 UI D3/week if 25OHD 16-30 ng/mL 2700 UI D3 fois/week if 25OHD>30 ng/mL

	before	end of study	Р
25OHD (ng/mL)	22.3 +/-12.0	42.0+/-12.1	<0.001
Calcemia (mg/L)	86 +/- 8	84 +/- 7	0.014
Phosphatemia (mg/L)	47 +/- 13	45 +/- 13	0.011
PTH (pg/mL)	233	208	<0.001
Albumin (g/L)	39 +/- 5	42 +/- 4	<0.001
CRP (mg/L)	4	2	0.004
BNP (pg/mL)	338	296	0.008
LVMI (g/m²)	134 +/- 31	121 +/- 32	0.01
Hb (g/dL)	12.1 +/- 1.2	11.9 +/- 1.4	NS

significant decrease of Paricalcitol (p<0.001) EPO (p=0.013) dosages and of the % of patients receiving Paricalcitol ((p<0.001) and Sevelamer (p<0.001)

Vitamin D Supplementation in Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Observational Studies and Randomized Controlled Trials

Praveen Kandula,* Mirela Dobre,[#] Jesse D. Schold,[§] Martin J. Schreiber, Jr.,[§] Rajnish Mehrotra,[¶]** and Sankar D. Navaneethan[§]


Conclusions Available evidence from low-to-moderate quality observational studies and fewer RCTs suggests that vitamin D supplementation improves biochemical endpoints. However, whether such improvements translate into clinically significant outcomes is yet to be determined.

Clin J Am Soc Nephrol 6: 50-62, 2011. doi: 10.2215/CJN.03940510

« Suggestion » of the KDIGO

3.1.3 In patients with CKD stages 3-5D, we suggest that 25OHD levels might be measured, and repeating testing determined by baseline values and therapeutic intervention (2C).
We suggest that vitamin D deficiency and insufficiency be corrected using treatment strategies recommended for the general population (2C).

Thank you for attention

